Định lý cos

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Hình 1 – Một tam giác với các góc α (hoặc A), β (hoặc B), γ (hoặc C) lần lượt đối diện với các cạnh a, b, c.

Trong lượng giác, định lý cos biểu diễn sự liên quan giữa chiều dài của các cạnh của một tam giác phẳng với cosin của góc tương ứng:

c^2 = a^2 + b^2 - 2ab\cos\gamma\,

hoặc

c^2 = a^2 + b^2 - 2ab\cos C\,

Công thức trên cũng có thể được viết dưới dạng:

\cos C = \frac{a^2+b^2-c^2}{2ab}\,

Định lý cos khái quát định lý Pytago (định lý Pytago là trường hợp riêng trong tam giác vuông): nếu γ là góc vuông thì cos γ = 0, và định lý cos trở thành định lý Pytago:

c^2 = a^2 + b^2\,

Định lý cos được dùng để tính cạnh thứ ba khi biết hai cạnh còn lại và góc giữa hai cạnh đó, hoặc tính các góc khi chỉ biết chiều dài ba cạnh của một giác.

Định lý cos được biểu diễn tương tự cho hai cạnh còn lại:

a^2 = b^2 + c^2 - 2bc\cos\alpha\,
b^2 = a^2 + c^2 - 2ac\cos\beta\,
Hình 2 – Tam giác tù ABC với đường cao BH

Ứng dụng[sửa | sửa mã nguồn]

Hình 3 – Ứng dụng của định lý cos: tìm cạnh chưa biết và góc chưa biết.

Định lý cos được dùng trong phép đạc tam giác để giải một tam giác hoặc một đường tròn. Ví dụ trong Hình 3, định lý cos được dùng để tìm:

  • cạnh thứ ba của một tam giác nếu đã biết hai cạnh còn lại và góc giữa chúng:
\,c = \sqrt{a^2+b^2-2ab\cos\gamma}\,;
  • ba góc nếu biết ba cạnh của tam giác
\,\gamma = \arccos\left(\frac{a^2+b^2-c^2}{2ab}\right)\,;
  • cạnh thứ ba nếu biết hai cạnh còn lại và góc đối diện một trong hai cạnh đó:
\, a=b\cos\gamma \pm \sqrt{c^2 -b^2\sin^2\gamma}\,.

Công thức thứ ba có được nhờ giải phương trình bậc hai a2 − 2ab cos γ + b2c2 = 0 với ẩn a. Phương trình này có hai nghiệm dương nếu b sin γ < c < b, một nghiệm dương nếu cb hoặc c = b sin γ, và vô nghiệm nếu c < b sin γ.

Chứng minh[sửa | sửa mã nguồn]

Sử dụng công thức tính khoảng cách[sửa | sửa mã nguồn]

Trong hệ tọa độ Descartes, cho tam giác ABC có ba cạnh a, b, cγ là góc đối diện cạnh c với tọa độ ba đỉnh lần lượt là

A = (b \cos\gamma,\ b \sin\gamma),\ B = (a,\ 0),\ C = (0,\ 0)\,.

Sử dụng công thức tính khoảng cách, ta có

c = \sqrt{(a - b \cos\gamma)^2 + (0 - b \sin\gamma)^2}\,.

do đó

\begin{align}
c^2 & {} = (a - b \cos\gamma)^2 + (- b \sin\gamma)^2 \\
c^2 & {} = a^2 - 2 a b \cos\gamma + b^2 \cos^2 \gamma + b^2 \sin^2 \gamma \\
c^2 & {} = a^2 + b^2 (\sin^2 \gamma + \cos^2 \gamma) - 2 a b \cos\gamma \\
c^2 & {} = a^2 + b^2  - 2 a b \cos\gamma\,.
\end{align}

Công thức này sử dụng được trong cả trường hợp tam giác nhọn và tam giác tù.

Sử dụng công thức lượng giác[sửa | sửa mã nguồn]

Hình 4 - Tam giác tù và đường cao

Hạ đường cao tương ứng với cạnh c như hình 4 ta có

c=a\cos\beta+b\cos\alpha\,.

(Công thức trên vẫn đúng nếu α hoặc β là góc tù, khi đó đường cao nằm ngoài tam giác và cos α hoặc cos β mang dấu âm). Nhân hai vế với c ta được

c^2 = ac\cos\beta + bc\cos\alpha.\,

Tương tự ta có

a^2 = ac\cos\beta + ab\cos\gamma,\,
b^2 = bc\cos\alpha + ab\cos\gamma.\,

Cộng vế theo vế hai phương trình sau ta có

a^2 + b^2 = ac\cos\beta + bc\cos\alpha + 2ab\cos\gamma.\,

Trừ vế theo vế phương trình đầu ta có

a^2 + b^2 - c^2 = - ac\cos\beta - bc\cos\alpha+ ac\cos\beta + bc\cos\alpha + 2ab\cos\gamma\,

đơn giản còn

c^2 = a^2 + b^2 - 2ab\cos\gamma.\,

Sử dụng định lý Pytago[sửa | sửa mã nguồn]

Hình 5 – Tam giác tù ABC với đường cao BH

Trường hợp tam giác tù. Euclid chứng minh đinh lý bằng cách áp dụng Định lý Pytago cho hai tam giác vuông trong Hình 5. Đặt CH = dBH = h, trong tam giác AHB ta có

c^2 = (b+d)^2 + h^2,\,

và trong tam giác CHB ta có

d^2 + h^2 = a^2.\,

Khai triển đa thức phương trình đầu tiên:

c^2 = b^2 + 2bd + d^2 +h^2.\,

thế phương trình thứ hai vào:

c^2 = a^2 + b^2 + 2bd.\,

Đây là mệnh đề 12 của Euclid trong tập 2 của bộ Cơ sở.[1] Chú ý rằng

d = a\cos(\pi-\gamma)= -a\cos\gamma.\,

Trường hợp tam giác nhọn. Được chứng minh trong mệnh đề 13 của Euclid ngay sau mệnh đề 12: ông áp dụng Định lý Pytago cho hai tam giác vuông có được bằng cách kẻ đường cao tương ứng với một trong hai cạnh kề góc γ và đơn giản bằng nhị thức.

Hình 6 – Chứng minh bằng lượng giác trong trường hợp tam giác nhọn

Cách khác trong trường hợp tam giác nhọn. Dựa vào Hình 6 ta có:

\begin{align}
c^2 & {} = (b-a\cos\gamma)^2 + (a\sin\gamma)^2 \\
& {} = b^2 - 2ab\cos\gamma + a^2\cos^2\gamma+a^2\sin^2\gamma \\
& {} = b^2 + a^2 - 2ab\cos\gamma,
\end{align}

với lưu ý rằng

\cos^2\gamma + \sin^2\gamma = 1.\,

Cũng từ Hình 6 ta có:

\tan\alpha = \frac{a\sin\gamma}{b-a\cos\gamma}

Công thức này được dùng để tính một góc khi biết hai cạnh và góc xen giữa hai cạnh đó.

Sử dụng định lý Ptolemy[sửa | sửa mã nguồn]

Chứng minh định lý cos bằng định lý Ptolemy

Vẽ đường tròn ngoại tiếp tam giác ABC. Dựng tam giác ABD bằng tam giác ABC với AD = BCBD = AC. Hạ đường cao từ DC, cắt AB lần lượt tại EF. Ta có:

\begin{align}
& BF=AE=BC\cos\hat{B}=a\cos\hat{B} \\
\Rightarrow \ & DC=EF=AB-2BF=c-2a\cos\hat{B}.  
\end{align}

Áp dụng định lý Ptolemy cho tứ giác nội tiếp ABCD:

\begin{align}
& AD \times BC + AB \times DC = AC \times BD \\
\Rightarrow \ & a^2 + c(c-2a\cos\hat{B})=b^2 \\
\Rightarrow \ & a^2+c^2-2ac \cos\hat{B}=b^2.
\end{align}

Trong tam giác cân[sửa | sửa mã nguồn]

Trong tam giác cân, do a = b nsup> + b2 = 2a2 = 2ab}}:

c^2 = 2a^2 (1 - \cos\gamma).\;

hay

\cos\gamma = 1 - \frac{c^2}{2a^2}

Sự tương đồng trong hình tứ diện[sửa | sửa mã nguồn]

Cho một tứ diện với α, β, γ, δ là diện tích bốn mặt của tứ diện đó. Kí hiệu các góc nhị diện\scriptstyle{ \widehat{\beta\gamma}, } và tương tự, ta có[2]

\alpha^2 = \beta^2 + \gamma^2 + \delta^2 - 2\left(\beta\gamma\cos\left(\widehat{\beta\gamma}\right) + \gamma\delta\cos\left(\widehat{\gamma\delta}\right) + \delta\beta\cos\left(\widehat{\delta\beta}\right)\right).\,

Định lý cos trong hình học phi Euclid[sửa | sửa mã nguồn]

Xem thêm[sửa | sửa mã nguồn]

Tài liệu tham khảo[sửa | sửa mã nguồn]

  1. ^ Java applet version by Prof. D E Joyce of Clark University.
  2. ^ Casey, John (1889). A Treatise on Spherical Trigonometry: And Its Application to Geodesy and Astronomy with Numerous Examples. London: Longmans, Green, & Company. tr. 133.