Điện động lực học lượng tử

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Bản mẫu:Lý thuyết trường lượng tử Trong vật lý hạt, điện động lực học lượng tử (QED) là lý thuyết trường lượng tử tương đối tính của điện động lực học. Về cơ bản, nó miêu tả cách ánh sángvật chất tương tác với nhau và là lý thuyết đầu tiên kết hợp được các tính chất của cơ học lượng tửthuyết tương đối hẹp. QED miêu tả bằng toán học mọi hiện tượng có sự tham gia của các hạt mang điện tương tác với nhau thông qua trao đổi các photon ảo và biểu diễn các tính chất lượng tử của điện từ học cổ điển mang lại một lý thuyết đầy đủ về tương tác vật chất và ánh sáng. Một trong những cha đẻ của QED, Richard Feynman, gọi nó là "viên ngọc của vật lý học" do khả năng tiên đoán chính xác các đại lượng như mômen từ dị thường của electron, dịch chuyển Lamb đối với mức năng lượng của hiđrô.[1]

Theo thuật ngữ kĩ thuật, QED là lý thuyết nhiễu loạn của chân không lượng tử điện từ.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết lượng tử đầu tiên miêu tả tương tác giữa bức xạ và vật chất do nhà khoa học người Anh Paul Dirac đưa ra, mà (trong thập niên 1920) ông là người đầu tiên tính được hệ số phát xạ tự phát cho một nguyên tử.[2]

Dirac miêu tả sự lượng tử hóa của trường điện từ giống như các dao động tử điều hòa và giới thiệu khái niệm toán tử sinh và hủy của hạt. Trong những năm sau, với các đóng góp của Wolfgang Pauli, Eugene Wigner, Pascual Jordan, Werner Heisenberg và hình thức điện động lực học lượng tử sáng rõ nêu bởi Enrico Fermi,[3] các nhà vật lý tin rằng, về nguyên lý, có thể tính toán bất kỳ một quá trình vật lý nào có sự tham gia của các photon và các hạt điện tích. Tuy nhiên, những nghiên cứu chi tiết hơn của Felix BlochArnold Nordsieck,[4]Victor Weisskopf,[5] trong năm 1937 và 1939, cho thấy những tính toán này chỉ tin cậy đối với xấp xỉ bậc nhất của lý thuyết nhiễu loạn, mà Robert Oppenheimer đã chỉ ra trước đó.[6] Những chuỗi vô hạn xuất hiện khi tính đến số hạng bậc cao hơn, khiến cho các tính toán trở lên vô nghĩa và dấy lên những nghi ngờ về tính nhất quán nội tại của lý thuyết. Trong thời gian này chưa có một giải pháp nào được nêu ra, và dường như nó không thể tương thích hoàn toàn đối với cả thuyết tương đối hẹpcơ học lượng tử.

Những khó khăn trong lý thuyết tăng lên vào cuối thập niên 1940. Với kỹ thuật mới dựa trên sóng vi ba cho phép thực hiện các thí nghiệm đo chính xác hơn mức dịch chuyển năng lượng đối với nguyên tử hiđrô,[7] mà ngày nay gọi là dịch chuyển Lambmômen từ dị thường của electron.[8] Những thí nghiệm này cho thấy những giá trị kỳ lạ xuất hiện mà lý thuyết lúc đó không thể giải thích được.

Hans Bethe là người đầu tiên nêu ra giải pháp khắc phục những trở ngại này. Năm 1947, trên chuyến xe lửa từ New York đến Schenectady,[9] sau khi tham gia hội nghị tổ chức tại Đảo Shelter về chủ đề này, Bethe đã hoàn thành tính toán phi tương đối tính đầu tiên về sự dịch chuyển của các vạch quang phổ của nguyên tử hiđrô mà trước đó Lamb và Retherford đo được.[10] Mặc dù có những hạn chế trong cách tính của ông, kết quả thu được khớp tuyệt vời so với thực nghiệm. Ý tưởng đơn giản nhằm triệt tiêu các giá trị vô hạn để hiệu chỉnh khối lượngđiện tích thu về giá trị hữu hạn như đo bằng các thí nghiệm. Theo cách này, những giá trị vô hạn sinh bởi chuỗi số bị hấp thụ bởi các hằng số và cho kết quả hữu hạn khớp với giá trị đo được từ thí nghiệm. Thủ tục này sau đó gọi là tái chuẩn hóa.

Feynman (giữa) và Oppenheimer (phải) tại Los Alamos.

Dựa trên trực giác của Bethe và những bài báo cơ sở về lĩnh vực này của Sin-Itiro Tomonaga,[11] Julian Schwinger,[12][13] Richard Feynman[14][15][16]Freeman Dyson,[17][18] các nhà vật lý cuối cùng đã có thể tìm ra được những công thức hiệp biến cho giá trị hữu hạn tại bậc xấp xỉ bất kỳ trong chuỗi số miêu tả bằng lý thuyết nhiễu loạn của điện động lực học lượng tử. Sin-Itiro Tomonaga, Julian SchwingerRichard Feynman cùng nhận giải Nobel Vật lý năm 1965 cho những công trình cơ bản trong ngành này.[19] Những đóng góp của họ, cùng với của Freeman Dyson, về khuôn khổ lý thuyết hiệp biến và bất biến chuẩn (gauge invariant) của điện động lực học lượng tử cho phép những tính toán về các đại lượng quan sát được tại những bậc xấp xỉ bất kỳ trong lý thuyết nhiễu loạn. Kỹ thuật toán học của Feynman, dựa trên các biểu đồ của ông, ban đầu dường như rất khác lạ so với cách tiếp cận theo lý thuyết trường, và toán tử của Schwinger và Tomonaga, nhưng sau đó Freeman Dyson chứng tỏ rằng hai cách tiếp cận này tương đương với nhau.[17] Tái chuẩn hóa, sự đòi hỏi gắn các đại lượng vật lý tại những phép phân kỳ nhất định xuất hiện trong lý thuyết thông qua các tích phân, sau đó trở thành một trong những công cụ cơ bản của lý thuyết trường lượng tử và mang lại sự chấp thuận rộng rãi của các nhà vật lý đối với lý thuyết. Ngay cả khi kỹ thuật tái chuẩn hóa hoạt động khá hiệu quả trong thực hành, Feynman không bao giờ cảm thấy dễ chịu hoàn toàn về tính đúng đắn toán học của nó, và ông coi tái chuẩn hóa giống như "trò xóc đĩa" (shell game) và "hocus pocus" (ma thuật).[20]

QED đã trở thành hình mẫu và khuôn khổ cho những lý thuyết trường lượng tử về sau. Một trong những lý thuyết đó là Sắc động lực học lượng tử QCD, hình thành từ đầu thập niên 1960 và có mô hình như ngày nay kể từ những công trình năm 1975 thực hiện bởi H. David Politzer, Sidney Coleman, David GrossFrank Wilczek. Dựa trên các công trình tiên phong của Schwinger, Gerald Guralnik, Dick Hagen, và Tom Kibble,[21][22] Peter Higgs, Jeffrey Goldstone, và những nhà vật lý khác, Sheldon Glashow, Steven WeinbergAbdus Salam độc lập với nhau chứng minh được lực hạt nhân yếu và điện động lực học lượng tử có thể thống nhất với nhau thành một lý thuyết chung là lý thuyết lực điện - yếu.

Tham khảo[sửa | sửa mã nguồn]

  1. ^ Feynman 1985, tr. 6
  2. ^ P.A.M. Dirac (1927). “The Quantum Theory of the Emission and Absorption of Radiation”. Proceedings of the Royal Society of London A 114 (767): 243–265. Bibcode:1927RSPSA.114..243D. doi:10.1098/rspa.1927.0039. 
  3. ^ E. Fermi (1932). “Quantum Theory of Radiation”. Reviews of Modern Physics 4: 87–132. Bibcode:1932RvMP....4...87F. doi:10.1103/RevModPhys.4.87. 
  4. ^ F. Bloch; A. Nordsieck (1937). “Note on the Radiation Field of the Electron”. Physical Review 52 (2): 54–59. Bibcode:1937PhRv...52...54B. doi:10.1103/PhysRev.52.54. 
  5. ^ V. F. Weisskopf (1939). “On the Self-Energy and the Electromagnetic Field of the Electron”. Physical Review 56: 72–85. Bibcode:1939PhRv...56...72W. doi:10.1103/PhysRev.56.72. 
  6. ^ R. Oppenheimer (1930). “Note on the Theory of the Interaction of Field and Matter”. Physical Review 35 (5): 461–477. Bibcode:1930PhRv...35..461O. doi:10.1103/PhysRev.35.461. 
  7. ^ W. E. Lamb; R. C. Retherford (1947). “Fine Structure of the Hydrogen Atom by a Microwave Method,”. Physical Review 72 (3): 241–243. Bibcode:1947PhRv...72..241L. doi:10.1103/PhysRev.72.241. 
  8. ^ P. Kusch; H. M. Foley (1948). “On the Intrinsic Moment of the Electron”. Physical Review 73 (3): 412. Bibcode:1948PhRv...73..412F. doi:10.1103/PhysRev.73.412. 
  9. ^ Schweber, Silvan (1994). “Chapter 5”. QED and the Men Who Did it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton University Press. tr. 230. ISBN 978-0-691-03327-3. 
  10. ^ H. Bethe (1947). “The Electromagnetic Shift of Energy Levels”. Physical Review 72 (4): 339–341. Bibcode:1947PhRv...72..339B. doi:10.1103/PhysRev.72.339. 
  11. ^ S. Tomonaga (1946). “On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields”. Progress of Theoretical Physics 1 (2): 27–42. doi:10.1143/PTP.1.27. 
  12. ^ J. Schwinger (1948). “On Quantum-Electrodynamics and the Magnetic Moment of the Electron”. Physical Review 73 (4): 416–417. Bibcode:1948PhRv...73..416S. doi:10.1103/PhysRev.73.416. 
  13. ^ J. Schwinger (1948). “Quantum Electrodynamics. I. A Covariant Formulation”. Physical Review 74 (10): 1439–1461. Bibcode:1948PhRv...74.1439S. doi:10.1103/PhysRev.74.1439. 
  14. ^ R. P. Feynman (1949). “Space–Time Approach to Quantum Electrodynamics”. Physical Review 76 (6): 769–789. Bibcode:1949PhRv...76..769F. doi:10.1103/PhysRev.76.769. 
  15. ^ R. P. Feynman (1949). “The Theory of Positrons”. Physical Review 76 (6): 749–759. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749. 
  16. ^ R. P. Feynman (1950). “Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction”. Physical Review 80 (3): 440–457. Bibcode:1950PhRv...80..440F. doi:10.1103/PhysRev.80.440. 
  17. ^ a ă F. Dyson (1949). “The Radiation Theories of Tomonaga, Schwinger, and Feynman”. Physical Review 75 (3): 486–502. Bibcode:1949PhRv...75..486D. doi:10.1103/PhysRev.75.486. 
  18. ^ F. Dyson (1949). “The S Matrix in Quantum Electrodynamics”. Physical Review 75 (11): 1736–1755. Bibcode:1949PhRv...75.1736D. doi:10.1103/PhysRev.75.1736. 
  19. ^ “The Nobel Prize in Physics 1965”. Nobel Foundation. Truy cập ngày 9 tháng 10 năm 2008. 
  20. ^ Feynman 1985, tr. 128
  21. ^ G.S. Guralnik, C.R. Hagen, T.W.B. Kibble (1964). “Global Conservation Laws and Massless Particles”. Physical Review Letters 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585. 
  22. ^ G.S. Guralnik (2009). “The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles”. International Journal of Modern Physics A 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. 

Đọc thêm[sửa | sửa mã nguồn]

Sách phổ thông[sửa | sửa mã nguồn]

Sách đại học[sửa | sửa mã nguồn]

Tạp chí[sửa | sửa mã nguồn]

  • Dudley, J.M.; Kwan, A.M. (1996). “Richard Feynman's popular lectures on quantum electrodynamics: The 1979 Robb Lectures at Auckland University”. American Journal of Physics 64 (6): 694–698. Bibcode:1996AmJPh..64..694D. doi:10.1119/1.18234. 

Liên kết ngoài[sửa | sửa mã nguồn]