Bàn tính

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Bàn tính

Bàn tính là một công cụ tính toán được sử dụng chủ yếu ở châu Á để thực hiện các phép toán số học. Ngày nay bàn tính được làm bằng khung tre với các hạt trượt trên dây trong khi những bàn tính ban đầu chỉ là hạt đậu hoặc đá di chuyển trong rãnh trên cát hoặc bàn gỗ, đá hay kim loại. Bàn tính được sử dụng nhiều thế kỉ trước khi chuyển sang hệ thống chữ số hiện đại. Ngày nay bàn tính vẫn được các thương nhân, nhà buôn và thư kí sử dụng rộng rãi ở châu Á, châu Phi và các nơi khác.

Một số loại bàn tính trên thế giới[sửa | sửa mã nguồn]

Trung Quốc[sửa | sửa mã nguồn]

Nhật Bản[sửa | sửa mã nguồn]

Soroban hiện đại. Chú ý đến tay người này đã di chuyện 2 hạt “năm” và “một” để thể hiện số 1234567890

Soroban (Nhật: 算盤, そろばん? Toán Bàn) là một bàn tính được nhập khẩu vào Nhật Bản khoảng năm 1600.[1] Giống như loại Suanpan của Trung Quốc, soroban vẫn còn được sử dụng rộng rãi ngày nay bên cạnh sự phát triển của máy tính điện tử rẻ và vừa túi tiền.

Bề ngoài của soroban giống như suanpan của Trung Quốc ám chỉ nguồn gốc của nó là từ Suanpan. Nhưng số hạt của soroban lại giống bàn tính La Mã.

Hầu hết các nhà sử học đều thống nhất nguồn gốc của nó là từ việc du nhập suanpan vào Nhật Bản qua bán đảo Triều Tiên vào khoảng thế kỷ thứ 15, 16. Lúc đó, tên suanpan được bản địa hóa thành soroban và nó bắt đầu được sử dụng rộng rãi từ thế kỷ thứ 17. Nhiều nhà toán học Nhật, trong đó có Kowa Seki đã đào sâu tìm hiểu về nó. Bằng chứng là sự cải tiến cách dùng soroban.

Khoảng năm 1850, một hạt “trời” được bỏ đi khỏi thiết kế của soroban. Thiết kế này tồn tại song song với suanpan 5:2 cho đến thời Minh Trị, suanpan hoàn toàn không còn được sử dụng. Đến năm 1891, Garyū Irie bỏ thêm một hạt “đất”, tạo nên một soroban có thiết kế 4:1 như ngày nay.[2] Thiết kế này được giới thiệu lần nữa năm 1930 và từ thập niên 40 thế kỉ thứ 20, nó trở nên phổ biến.

Sau khi du nhập vào Nhật, bàn tính được dùng kèm với bảng tính chia gọi là hassan (Nhật: 八算? "Bát Toán"). Phương pháp dùng hassan gọi là kyūkihō (Nhật: 九帰法? "Cửu Quy Pháp"). Kyūkihō phổ biến cho đến khi tiền tệ Nhật thay đổi cơ cấu sang hệ thập phân và hoàn toàn biến mất năm 1935. Thay vào đó là người Nhật sử dụng phương pháp do Hiệp hội Bàn tính Nhật Bản đề xướng, dựa trên cách “đếm trục” lần đầu được đề xướng bởi nhà toán học Chubei Momokawa năm 1645.[3].

Cấu tạo[sửa | sửa mã nguồn]

Suanpan (phía trên) và soroban (phía dưới)

Hai bàn tính này có kích thước tiêu chuẩn và có 13 trục.

Hạt[sửa | sửa mã nguồn]

Soroban bao gồm số nguyên lẻ trục, mỗi trục có 2 loại hạt:

  • go-dama (Nhật: 五玉, ごだま? "hạt năm"): hay còn được gọi hạt “trời”, có 1 hạt, mỗi hạt mang giá trị tương đương 5
  • ichi-dama (Nhật: 一玉, いちだま? "hạt một"): hay còn được gọi hạt “đất”, có 4 hạt, mỗi hạt mang giá trị tương đương 1

Những hạt “trời” được phân biệt với những hạt “đất” bằng một thanh ngang.

Kích cỡ bàn và kích cỡ hạt của soroban tiêu chuẩn 13 trục nhỏ và gọn hơn một suanpan có chức năng tương tự.

Trục[sửa | sửa mã nguồn]

Số trục của soroban luôn là số lẻ không nhỏ hơn 9. Soroban tiêu chuẩn có 13 trục nhưng những soroban có ứng dụng nhiều hơn lại có số trục lên đến 21, 23, 27, thậm chí đến 31. Điều đó cho phép thể hiện được số có nhiều chữ số hơn hay thể hiện nhiều con số cùng lúc. Mỗi trục lại thể hiện một chữ số; càng nhiều trục càng thể hiện được số nhiều chữ số hơn.

Vật liệu[sửa | sửa mã nguồn]

Hầu hết soroban ở Nhật đều có khung được làm từ gỗ với trục bằng gỗ, kim loại, tre hay cây mây. Hạt thường được làm từ gỗ nhưng đặc biệt ở ngoài Nhật Bản, hạt có thể được làm từ đá hay bằng nhựa. Hạt thường có hình nón đôi (hai hình nón có đáy chung hình tròn).

Đặc điểm[sửa | sửa mã nguồn]

Quy ước trục I làm hàng đơn vị. Những trục bên trái trục I lần lượt từ hàng chục trở lên. Những trục bên phải trục I là phần thập phân sau dấu phẩy, trừ trường hợp làm phép nhân hay chia.

Một tính năng tách biệt soroban với bàn tình suanpan của Trung Quốc là những chấm phân cụm 3 trục. Mỗi cụm ba trục được gọi là “những trục cơ bản”. Cụm trục cơ bản có thể được quy ước thể hiện những chữ số cuối cùng của phần số nguyên. suanpan không có chức năng này.

Cách sử dụng[sửa | sửa mã nguồn]

Biểu diễn số[sửa | sửa mã nguồn]
Soroban 0 cc.svg Soroban 1 cc.svg Soroban 2 cc.svg Soroban 3 cc.svg Soroban 4 cc.svg Soroban 5 cc.svg Soroban 6 cc.svg Soroban 7 cc.svg Soroban 8 cc.svg Soroban 9 cc.svg
0 1 2 3 4 5 6 7 8 9

Để biểu diễn một con số trên một trục, di chuyển các hạt trên trục.

  • Để biểu diễn số 0, di chuyển hạt “trời” lên phía trên và 4 hạt “đất” xuống dưới như hình.
  • Để thể hiện từ 1 đến 4, lần lượt di chuyển từ 1 đến 4 hạt “đất” lên trên.
  • Để diễn tả số 5, dồn 4 hạt “đất” xuống dưới và đẩy hạt “trời xuống dưới.
  • Để diễn tả số lớn hơn 5, giữ hạt “trời” phía dưới và đẩy lần lượt từng hạt lên.
Tính toán[sửa | sửa mã nguồn]

Cách cộng trừ trên soroban giống như bất cứ một bàn tính nào khác. Di chuyển các hạt thể hiện giá trị mong muốn.

Có nhiều cách để thực hiện phép nhân hay chia trên soroban, nhất là những cách làm của người Trung Quốc khi suanpan được du nhập đến Nhật Bản. Hiệp hội Bàn tính Nhật Bản đã đề nghị các cách cơ bản, tiêu chuẩn nhất cho cả hai phép nhân chia. Theo đó, chỉ cần sử dụng một bảng tính nhân. Các cách này được lựa chọn vì tính hiệu quả và tốc độ tính toán. Tuy nhiên nó chỉ có tác dụng với những soroban trước thập niên 30.

Ứng dụng hiện đại[sửa | sửa mã nguồn]

Máy tính-Soroban kết hợp, SHARP ELSI MATE EL-8048, sản xuất năm 1979

Bên cạnh sự phát triển của máy tính điện tử, soroban vẫn còn phổ biến. Hằng năm, Nhật tổ chức các kì thi để người sử dụng soroban có thể lấy giấy chứng nhận. Có tổng cộng 6 cấp độ thuần thục soroban từ thấp đến cao: cấp độ 6 thấp nhất là có kĩ năng đến cấp độ 1 là hoàn toàn thuần thục soroban. Người có chứng nhận cấp độ 3 trở lên có thể xin vào làm việc tại các tập đoàn Nhà nước.

Soroban còn được dạy trong các tiết Toán bậc Tiểu học. Khi đi học, học sinh mang theo hai bàn tính: một bàn có thiết kế hiện đại và một bàn có thiết kế xưa hơn (1 hạt “trời”, 5 hạt “đất”).

Những người học soroban thành thạo có khả năng tính toán trong đầu, không cần phải có một soroban thực tế. Việc tính toán đó gọi là anzan (Nhật: 暗算 Ám Toán?) trong tiếng Nhật. Khi học sử dụng soroban cấp độ trung cấp, người học trung cấp sẽ được yêu cầu tính toán nhẩm bằng cách tưởng tượng ra một soroban (hay bất cứ một bàn tính nào) để giải toán.

Soroban cũng là cơ sở phát triển hai loại bàn tính dành cho người khiếm thị.

Hàn Quốc[sửa | sửa mã nguồn]

Chú thích[sửa | sửa mã nguồn]

  1. ^ A Brief History of the Abacus The Abacus: A Brief History "Circa 1600 AD, use and evolution of the Chinese 1/5 abacus was begun by the Japanese via Korea."
  2. ^ Frédéric, Louis (2005). Japan encyclopedia. translated by Käthe Roth. Harvard University Press. tr. 303, 903. 
  3. ^ Smith, David Eugene; Mikami, Yoshio (1914). “Chapter III: The Development of the Soroban.”. A History of Japanese Mathematics. The Open Court Publishing. tr. 43–44.  Bản số hoá miến phí tải tại trang Questia.

Tham khảo[sửa | sửa mã nguồn]

  • Carruccio, Ettore (2006), Mathematics And Logic in History And in Contemporary Thought, Aldine Transaction, ISBN 0202308502 .
  • Crump, Thomas (1992), The Japanese Numbers Game: The Use and Understanding of Numbers in Modern Japan, Routledge, ISBN 0415056098 .
  • Ifrah, Georges (2001), The Universal History of Computing: From the Abacus to the Quantum Computer, New York: John Wiley & Sons .
  • Körner, Thomas William; Langer, William Leonard (1996), The Pleasures of Counting, Houghton Mifflin Books, ISBN 0521568234 .
  • Mollin, Richard Anthony (September năm 1998), Fundamental Number Theory with Applications, CRC Press, ISBN 0849339871 .
  • Peng Yoke Ho (2000), Li, Qi and Shu: An Introduction to Science and Civilization in China, Courier Dover Publications, ISBN 0486414450 .
  • Pullan, J. M. (1968), The History of the Abacus, London: Books That Matter, ISBN 0-09-089410-3 .
  • Reilly, Edwin D.; Langer, William Leonard (2004), Concise Encyclopedia of Computer Science, John Wiley and Sons, ISBN 0470090952 .
  • Smith, David Eugene (1958), History of Mathematics (Volume 2), Courier Dover Publications, ISBN 0486204308 .
  • Stearns, Peter N.; Langer, William Leonard (2001), The Encyclopedia of World History: Ancient, Medieval, and Modern, Chronologically Arranged, Houghton Mifflin Books, ISBN 0395652375 .
  • ed. in chief Frederick C. Mish (2003), Merriam-Webster's Collegiate Dictionary (ấn bản 11), Merriam-Webster, Inc, ISBN 0877798095 .
  • Bản mẫu:OED

Xem thêm[sửa | sửa mã nguồn]

  • Menninger, Karl W. (1969), Number Words and Number Symbols: A Cultural History of Numbers, MIT Press, ISBN 0-262-13040-8 .
  • Kojima, Takashi (1954), The Japanese Abacus: its Use and Theory, Tokyo: Charles E. Tuttle, ISBN 0-8048-0278-5 .

Liên kết ngoài[sửa | sửa mã nguồn]

Wikisource-logo.svg
Wikisource có văn bản gốc từ 1911 Encyclopædia Britannica về:

Hướng dẫn[sửa | sửa mã nguồn]

Nghệ thuật[sửa | sửa mã nguồn]

Nhóm[sửa | sửa mã nguồn]

Giảng dạy[sửa | sửa mã nguồn]