Giai thừa nguyên tố

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
n# là một hàm của n (các điểm màu đỏ), so với n!. Cả hai điểm đã được logarith hóa
pn# là một hàm của n, các điểm đã logarithm hóa.

Với n ≥ 2, giai thừa nguyên tố (tiếng Anh: primorial) (ký hiệu n#) là tích của tất cả các số nguyên tố nhỏ hơn hoặc bằng n. Chẳng hạn, 7# = 210 là tích các số nguyên tố (2·3·5·7). Tên này đặt theo Harvey Dubner và là từ ghép của primefactorial. Các giai thừa nguyên tố đầu tiên là:

2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410 (theo OEIS).

Ý tưởng lấy tích của tất cả các số nguyên tố nằm trong chứng minh số các số nguyên tố là vô hạn; nó được sử dụng để mâu thuẫn khi giả thiết rằng số các số nguyên tố là hữu hạn.

Các Primorial đóng vai trò quan trọng trong việc tìm các số nguyên tố trong cấp số cộng. Chẳng hạn, 2236133941 + 23# là một số nguyên tố, khởi đầu dãy 13 số nguyên tố bằng cách cộng thêm 23#, và kết thúc với 5136341251. Số 23# chính là công bội của các cấp số cộng gồm mười lăm và mười sáu số nguyên tố.

Mọi hợp số là tích của các giai thừa nguyên tố (nghĩa là 360 = 2·6·30).

Bảng các giai thừa nguyên tố[sửa | sửa mã nguồn]

p p#
2 2
3 6
5 30
7 210
11 2310
13 30030
17 510510
19 9699690
23 223092870
29 6469693230
31 200560490130
37 7420738134810
41 304250263527210
43 13082761331670030
47 614889782588491410
53 32589158477190044730
59 1922760350154212639070
61 117288381359406970983270
67 7858321551080267055879090
71 557940830126698960967415390
73 40729680599249024150621323470
79 3217644767340672907899084554130
83 267064515689275851355624017992790
89 23768741896345550770650537601358310
97 2305567963945518424753102147331756070

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]

  • Harvey Dubner, "Factorial and primorial primes". J. Recr. Math., 19, 197–203, 1987.

Liên kết[sửa | sửa mã nguồn]