Phương trình Dirac

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Các chủ đề trong lý thuyết lượng tử
\Delta x \Delta p \ge \frac{\hbar}{2}
Các công thức toán học của cơ học lượng tử

Ký hiệu Bra-ket | Hệ thức giao hoán | Mô hình Heisenberg | Mô hình Schrödinger | Hàm sóng | Phép đo trong cơ học lượng tử | Bán cổ điển | Tích phân lộ trình | Phép gần đúng WKB | Logic lượng tử | Toán tử | Lý thuyết trường lượng tử | Tiên đề Wightman

Phương trình Schrödinger

Cơ học ma trận, Toán tử Hamilton | Hạt trong hố thế | Hạt trong thế năng đối xứng cầu | Dao động tử điều hòa lượng tử | Nguyên tử hidro | Hạt trong mạng một chiều

Đối xứng

Định lý Noether | Đối xứng Lorentz > Bất biến quay > Đối xứng quay > Toán tử quay > Mô men xung lượng | Đối xứng tịnh tiến | Biến đổi chẵn lẻ | Hạt đồng nhất | Spin | Đồng spin | Ma trận Pauli | Bất biến tỷ lệ | Sự phá vỡ tính đối xứng tự phát | Sự phá vỡ tính siêu đối xứng

Trạng thái lượng tử

Số lượng tử | Nguyên lý loại trừ Pauli | Bất định lượng tử | Nguyên lý bất định | Suy sập của hàm sóng | Năng lượng điểm không | Trạng thái liên kết | Trạng thái cố kết > Trạng thái siêu cố kết | Trạng thái Fock, Không gian Fock | Trạng thái chân không | Định lý không vô tính | Vướng lượng tử

Phương trình Dirac

Spinor, Nhóm Spinor, Bó Spinor | Biến Dirac | Bọt Spin | Nhóm Poincaré | Phân loại Wigner | Anyon

Giải thích cơ học lượng tử

Lưỡng tính sóng hạt | Giải thích Copenhagen | Nguyên lý định vị | Định lý Bell > Kẽ hở Bell | Bất đẳng thức CHSH | Bất đẳng thức Wigner-d'Espagnat | Biến ẩn | Giải thích của Bohm | Đa thế giới | Liên kết Tsirelson

Lý thuyết trường lượng tử

Giản đồ Feynman > Giản đồ chu trình đơn Feynman > Giản đồ cây | Vật truyền | Toán tử hủy | Ma trận S | Vật lý cục bộ | Không cục bộ | Lý thuyết trường hiệu dụng | Hàm tương quan | Tái chuẩn hóa | Tới hạn | Phân kỳ hồng ngoại, infrared fixed point | Phân kỳ tử ngoại | Tương tác Fermi | Trật tự lộ trình | Cực Landau | Cơ học Higgs | Đường Wilson | Chu trình Wilson | Tadpole | Chuẩn mạng | Điện tích BRST | Kỳ dị | Kỳ dị Chiral | Thống kê Braid | Plekton

Tính toán

Tính toán lượng tử | Qubit | Trạng thái qubit thuần túy | Chấm lượng tử | Máy tính Kane | Mật mã lượng tử | Mạch lượng tử | Máy tính lượng tử | Lộ trình thời gian

Đối xứng

Siêu đại số Lie | Siêu nhóm | supercharge | supermultiplet | Siêu hấp dẫn

Hấp dẫn lượng tử

TOE | Lý thuyết hấp dẫn lượng tử vòng | Mạng spin | Nhiệt động lực học lỗ đen

Hình học không giao hoán

Nhóm lượng tử | Đại số Hopf | Lý thuyết trường lượng tử không giao hoán

Lý thuyết dây

Xem Các chủ đề trong lý thuyết dây | Mô hình ma trận

Xem thêm

Các chủ đề trong giải tích hàm, Các chủ đề về nhóm Lie.

Bản mẫu:Lý thuyết trường lượng tử Trong vật lý hạt, phương trình Dirac là một phương trình sóng tương đối tính do nhà vật lý người Anh Paul Dirac nêu ra vào năm 1928 và sau này được coi như là kết quả mở rộng của các nghiên cứu thực hiện bởi Wolfgang Pauli. Trong dạng tự do, hay bao gồm tương tác điện từ, phương trình này miêu tả hành trạng của các hạt với spin-½, như electronquark, đồng thời nó nhất quán với các nguyên lý của cơ học lượng tử và của thuyết tương đối hẹp.[1] Phương trình này là lý thuyết cơ học lượng tử đầu tiên tính đến đầy đủ các đặc tính của thuyết tương đối hẹp.

Phương trình cũng miêu tả cấu trúc tinh tế trong dải phổ hiđrô theo một cách rất phức tạp. Hệ quả của phương trình này cũng hàm ý sự tồn tại của một dạng vật chất mới đó là phản vật chất, mà cho đến thời điểm nó các nhà vật lý chưa hề nghĩ tới hay quan sát được, và sau đó phản vật chất đã được phát hiện bằng thực nghiệm. Phương trình cũng cung cấp sự hiệu chỉnh lý thuyết bằng việc đưa ra các hàm sóng chứa một số thành phần trong lý thuyết của Pauli về spin; hàm sóng trong lý thuyết của Dirac là các vectơ với bốn thành phần là các số phức (còn gọi là bispinor), hai trong số chúng giống với hàm sóng Pauli trong giới hạn phi tương đối tính, khác với phương trình Schrödinger mà miêu tả hàm sóng chỉ có một thành phần phức. Hơn nữa, trong trường hợp khối lượng gán bằng 0, phương trình Dirac trở thành phương trình Weyl.

Mặc dù ban đầu Dirac không hoàn toàn đánh giá đầy đủ ý nghĩa quan trọng của phương trình này, nhưng với hệ quả của việc giải thích spin trong sự thống nhất giữa cơ học lượng tử với thuyết tương đối hẹp - cũng như tiên đoán và phát hiện ra positron— thể hiện lý thuyết và phương trình Dirac là một trong những thành tựu to lớn của vật lý lý thuyết. Phương trình là sự hội tụ của các công trình của Newton, Maxwell, và Einstein trước ông.[2] Trong lý thuyết trường lượng tử, phương trình Dirac được giải thích theo nghĩa khác nhằm miêu tả trường lượng tử tương ứng với các hạt có spin-½.

Biểu diễn toán học[sửa | sửa mã nguồn]

Phương trình Dirac trong dạng ban đầu viết bởi Dirac là:[3]

\left(\beta mc^2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3)\right) \psi (x,t) = i \hbar \frac{\partial\psi(x,t) }{\partial t}

với ψ = ψ(x, t)hàm sóng bốn thành phần cho electronkhối lượng nghỉ m trong hệ tọa độ không thời gian x, t. Các đại lượng p1, p2, p3 là những thành phần của vectơ động lượng, được hiểu như là toán tử động lượng trong lý thuyết của Schrödinger. Các hằng số, ctốc độ ánh sáng, và ħhằng số Planck chia cho 2π. Những hằng số vật lý này lần lượt đại diện cho thuyết tương đối hẹp và cơ học lượng tử.

Các đại lượng αk and β là những ma trận 4x4, chúng đều là các ma trận Hermit và bình phương của chúng bằng ma trận đơn vị:

\alpha_i^2=\beta^2=I_4

Các ma trận này phản giao hoán lẫn nhau, có nghĩa là nếu ij khác nhau thì:

\alpha_i\alpha_j + \alpha_j\alpha_i = 0
\alpha_i\beta + \beta\alpha_i = 0

Tham khảo[sửa | sửa mã nguồn]

  1. ^ P.W. Atkins (1974). Quanta: A handbook of concepts. Oxford University Press. tr. 52. ISBN 0-19-855493-1. 
  2. ^ T.Hey, P.Walters (2009). The New Quantum Universe. Cambridge University Press. tr. 228. ISBN 978-0-521-56457-1. 
  3. ^ Dirac, P.A.M. (1958 (reprinted in 2011)). Principles of Quantum Mechanics (ấn bản 4). Clarendon. tr. 255. ISBN 978-0-19-852011-5. 

Các bài báo liên quan[sửa | sửa mã nguồn]

Sách[sửa | sửa mã nguồn]

  • Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. 
  • Shankar, R. (1994). Principles of Quantum Mechanics (ấn bản 2). Plenum. 
  • Bjorken, J D & Drell, S. Relativistic Quantum mechanics. 
  • Thaller, B. (1992). The Dirac Equation. Texts and Monographs in Physics. Springer. 
  • Schiff, L.I. (1968). Quantum Mechanics (ấn bản 3). McGraw-Hill. 
  • Griffiths, D.J. (2008). Introduction to Elementary Particles (ấn bản 2). Wiley-VCH. ISBN 978-3-527-40601-2. 

Liên kết ngoài[sửa | sửa mã nguồn]