Số nguyên tố chính quy

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Trong toán học, số nguyên tố chính quy là một loại số nguyên tố do Ernst Kummer đặt ra với định nghĩa: Một số nguyên tố p được gọi là chính quy nếu không tồn tại bất cứ một tử số nào của số Bernoulli Bk (khi k = 2, 4, 6, …, p − 3.) chia hết cho p. Một vài số nguyên tố chính quy nhỏ nhất là::3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, … (dãy A007703 trong OEIS).

Nó đã được giả thuyết là có vô hạn số nguyên tố chính quy. Một giả thuyết khác của nhà toán học (Siegel, 1964) rằng e−1/2, hay khoảng 61% các số nguyên tố là chính quy. Cả 2 giả thuyết này vẫn chưa có ai chứng minh được cho đến 2008.

Trong lịch sử Ernst Kummer đã tìm ra loại số này khi đang cố gắng chứng minh định lý lớn Fermat là đúng với số mũ là các số này (và các số mũ là tích của các số này)

Trái lại với số nguyên tố chính quy là số nguyên tố phi chính quy. Nếu tồn tại một tử số của số Bernoulli Bk mà chia hết cho p thì p được gọi là số nguyên tố phi chính quy.K L Jensen đã cho thấy có vô số phi chính quy. Một vài số nhỏ nhất của chúng là::37, 59, 67, 101, 103, 131, 149, … (dãy A000928 trong OEIS).

Xem thêm[sửa | sửa mã nguồn]

Thuyết Herbrand–Ribet

Liên kết ngoài[sửa | sửa mã nguồn]