Tam giác đều

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Tam giác đều

Trong hình học, tam giác đềutam giác có ba cạnh bằng nhau hoặc tương đương ba góc bằng nhau, và bằng 60°. Nó là một đa giác đều với số cạnh bằng 3.

Tính chất[sửa | sửa mã nguồn]

Giả sử độ dài ba cạnh tam giác đều bằng a\,\!, dùng định lý Pytago chứng minh được:

Với một điểm P bất kỳ trong mặt phẳng tam giác, khoảng cách từ nó đến các đỉnh A, B, và C lần lượt là p, q, và t ta có:,[1]

3(p^{4}+q^{4}+t^{4}+a^{4})=(p^{2}+q^{2}+t^{2}+a^{2})^{2}.

Với một điểm P bất kỳ nằm bên trong tam giác, khoảng cách từ nó đến các cạnh tam giác là d, e, và f, thì d+e+f = chiều cao của tam giác, không phụ thuộc vào vị trí P.[2]

Với điểm P nằm trên đường tròn ngoại tiếp, các khoảng cách từ nó đến các đỉnh của tam giác là p, q, và t, thì[1]

4(p^{2}+q^{2}+t^{2})=5a^{2}

16(p^{4}+q^{4}+t^{4})=11a^{4}.

Nếu P nằm trên cung nhỏ BC của đường tròn ngoại tiếp, với khoảng cách đến các đỉnh A, B, và C lần lượt là p, q, và t, ta có:[1]

p=q+t

q^{2}+qt+t^{2}=a^{2};

hơn nữa nếu D là giao điểm của BC và PA, DA có độ dài z và PD có độ dài y, thì[3]

z= \frac{t^{2}+tq+q^2}{t+q},

và cũng bằng \tfrac{t^{3}-q^{3}}{t^{2}-q^{2}} nếu tq; và

\frac{1}{q}+\frac{1}{t}=\frac{1}{y}.

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]

  1. ^ a ă â De, Prithwijit, "Curious properties of the circumcircle and incircle of an equilateral triangle," Mathematical Spectrum 41(1), 2008-2009, 32-35.
  2. ^ Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, Dover Publ., 1996.
  3. ^ Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, second edition, Dover Publ. Co., 1996, pp. 170-172.

Liên kết ngoài[sửa | sửa mã nguồn]