Khác biệt giữa bản sửa đổi của “Lịch sử hóa học”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
same image, better quality (GlobalReplace v0.6.5)
Dòng 1: Dòng 1:
<gallery caption="Một số nguyên tố phi kim ">
[[Tập tin:robert boyle.jpg|nhỏ|190px|phải|[[Robert Boyle]], người tiên phong của hóa học hiện đại ]]
Tập tin:Min sulfur.jpg|Lưu huỳnh
Tập tin:Red phosphorus as powder.jpg|Photpho đỏ
Tập tin:Graphite-182564.jpg|Cacbon
Tập tin:Bromine 25ml (transparent).png|Brôm
Tập tin:Chlorine ampoule.jpg|Clo
</gallery>'''Lịch sử ngành hóa học''' có lẽ được hình thành cách đây khoảng 4000 năm khi người [[Ai Cập]] cổ đại lần đầu dùng kĩ thuật tổng hợp hóa học dạng "ướt".<ref>[http://www.newscientist.com/article/mg16121734.300-first-chemists.html First chemists], 13 tháng 2 năm 1999, New Scientist</ref>Đến thời kì 1000 năm trước Công nguyên một số nền văn minh đã dùng những kĩ thuật hóa học vẫn còn giá trị nền tảng cho đến tận ngày nay, như: luyện [[thép]] từ quặng sắt, làm đồ gốm, lên men [[rượu]] [[bia]], tạo ra màu để sơn và trang trí, chiết xuất tinh chất từ thực vật làm thuốc hay [[nước hoa]], làm phô mai, nhuộm quần áo, thuộc da, chế biến [[mỡ]] thành [[xà phòng|xà bông]], làm ra [[thủy tinh]], chế tạo hợp kim chẳng hạn đồng.


Cách tiếp cận đến bản chất của thế giới [[vật chất]] và những chuyển hóa trong đó theo kiểu triết học thời cổ đại cũng như theo kiểu [[giả kim thuật]] đã không thành công, nhưng bằng cách làm thực nghiệm và ghi lại kết quả các [[nhà giả kim]] đã đặt nền móng cho phương pháp khoa học sau này. Năm 1661, [[Robert Boyle]] bằng công trình ''[[The Sceptical Chymist]]'' đã tách biệt hẳn giả kim thuật và [[hóa học]], mở ra thời kì mới cho hóa học hiện đại.
'''Lịch sử ngành hóa học''' có lẽ được hình thành cách đây khoảng 4000 năm khi người [[Ai Cập]] cổ đại lần đầu dùng kĩ thuật tổng hợp hóa học dạng "ướt".<ref>[http://www.newscientist.com/article/mg16121734.300-first-chemists.html First chemists], 13 tháng 2 năm 1999, New Scientist</ref>
Đến thời kì 1000 năm trước Công nguyên một số nền văn minh đã dùng những kĩ thuật hóa học vẫn còn giá trị nền tảng cho đến tận ngày nay, như: luyện [[thép]] từ quặng sắt, làm đồ gốm, lên men [[rượu]] [[bia]], tạo ra màu để sơn và trang trí, chiết xuất tinh chất từ thực vật làm thuốc hay [[nước hoa]], làm phô mai, nhuộm quần áo, thuộc da, chế biến [[mỡ]] thành [[xà phòng|xà bông]], làm ra [[thủy tinh]], chế tạo hợp kim chẳng hạn đồng.

Cách tiếp cận đến bản chất của thế giới [[vật chất]] và những chuyển hóa trong đó theo kiểu triết học thời cổ đại cũng như theo kiểu [[giả kim thuật]] đã không thành công, nhưng bằng cách làm thực nghiệm và ghi lại kết quả các [[nhà giả kim]] đã đặt nền móng cho phương pháp khoa học sau này. Năm 1661 ông [[Robert Boyle]] bằng công trình ''[[The Sceptical Chymist]]'' đã tách biệt hẳn giả kim thuật và [[hóa học]], mở ra thời kì mới cho hóa học hiện đại.


Hóa học trở thành ngành khoa học theo nghĩa đầy đủ khi [[Antoine Lavoisier]] nêu ra [[định luật bảo toàn khối lượng]], đòi hỏi các đại lượng hóa học phải được định lượng và đo lường cẩn thận. Vì thế mà dù cả giả kim thuật lẫn hóa học đều quan tâm đến bản chất của vật chất và sự chuyển hóa của chúng nhưng chỉ có [[nhà hóa học]], chứ không phải nhà giả kim, dùng [[phương pháp khoa học]] trong nghiên cứu. Lịch sử hóa học thường được gắn với lịch sử [[nhiệt động lực học|nhiệt động học]], nhất là từ công trình của [[Willard Gibbs]].<ref>[http://web.lemoyne.edu/~giunta/papers.html Selected Classic Papers from the History of Chemistry]</ref>
Hóa học trở thành ngành khoa học theo nghĩa đầy đủ khi [[Antoine Lavoisier]] nêu ra [[định luật bảo toàn khối lượng]], đòi hỏi các đại lượng hóa học phải được định lượng và đo lường cẩn thận. Vì thế mà dù cả giả kim thuật lẫn hóa học đều quan tâm đến bản chất của vật chất và sự chuyển hóa của chúng nhưng chỉ có [[nhà hóa học]], chứ không phải nhà giả kim, dùng [[phương pháp khoa học]] trong nghiên cứu. Lịch sử hóa học thường được gắn với lịch sử [[nhiệt động lực học|nhiệt động học]], nhất là từ công trình của [[Willard Gibbs]].<ref>[http://web.lemoyne.edu/~giunta/papers.html Selected Classic Papers from the History of Chemistry]</ref>

== Thời cổ đại ==


===Từ lửa đến Nguyên tử luận===
===Từ lửa đến Nguyên tử luận===
Dòng 14: Dòng 19:
Những [[triết gia]] cổ đại trong khi cố gắng hợp lý hóa những vấn đề, chẳng hạn tại sao các chất khác nhau thì có đặc tính (màu, mùi, mật độ) khác nhau, cũng tồn tại ở những trạng thái (khí, lỏng, rắn) khác nhau, đồng thời có phản ứng khác nhau lúc tiếp xúc với môi trường (nước, lửa, nhiệt độ thay đổi) xung quanh, đã đưa ra lý thuyết sơ khởi về tự nhiên hay cụ thể là về hóa học. Những triết thuyết liên quan đến hóa học có thể nhận thấy ở bất kì nền văn minh cổ đại nào, và tựu trung đều cố gắng chỉ ra vài [[nguyên tố]] cơ bản cấu thành mọi chất khác tồn tại trong tự nhiên. Từ những khái niệm cụ thể như [[khí quyển Trái Đất|không khí]], [[nước]], [[đất]], [[lửa]], [[ánh sáng]] đến trừu tượng hơn như [[ý thức]], [[thiên đàng|thiên đường]] là những nguyên tố cơ bản rất phổ biến trong nhiều nền văn minh cổ như Hy Lạp, Ấn Độ, Maya, Trung Hoa.{{Fact|date=June 2008}}
Những [[triết gia]] cổ đại trong khi cố gắng hợp lý hóa những vấn đề, chẳng hạn tại sao các chất khác nhau thì có đặc tính (màu, mùi, mật độ) khác nhau, cũng tồn tại ở những trạng thái (khí, lỏng, rắn) khác nhau, đồng thời có phản ứng khác nhau lúc tiếp xúc với môi trường (nước, lửa, nhiệt độ thay đổi) xung quanh, đã đưa ra lý thuyết sơ khởi về tự nhiên hay cụ thể là về hóa học. Những triết thuyết liên quan đến hóa học có thể nhận thấy ở bất kì nền văn minh cổ đại nào, và tựu trung đều cố gắng chỉ ra vài [[nguyên tố]] cơ bản cấu thành mọi chất khác tồn tại trong tự nhiên. Từ những khái niệm cụ thể như [[khí quyển Trái Đất|không khí]], [[nước]], [[đất]], [[lửa]], [[ánh sáng]] đến trừu tượng hơn như [[ý thức]], [[thiên đàng|thiên đường]] là những nguyên tố cơ bản rất phổ biến trong nhiều nền văn minh cổ như Hy Lạp, Ấn Độ, Maya, Trung Hoa.{{Fact|date=June 2008}}


Nguồn gốc của [[nguyên tử luận]] được coi là từ Hy Lạp và Ấn Độ cổ.<ref name = "Will">
Nguồn gốc của [[nguyên tử luận]] được coi là từ Hy Lạp và Ấn Độ cổ.<ref name="Will">[[Will Durant]] (1935), ''Our Oriental Heritage'':
[[Will Durant]] (1935), ''Our Oriental Heritage'':
<br>{{quote|"Two systems of [[Ấn Độ giáo|Hindu]] thought propound [[physics|physical]] theories suggestively similar to those of [[Ancient Greece|Greece]]. [[Kanada]], founder of the [[Vaisheshika]] philosophy, held that the world was composed of atoms as many in kind as the various elements. The [[Jainism|Jains]] more nearly approximated to [[Democritos|Democritus]] by teaching that all atoms were of the same kind, producing different effects by diverse modes of combinations. Kanada believed [[light]] và [[heat]] to be varieties of the same substance; [[Udayana]] taught that all heat comes from the sun; and [[Vācaspati Miśra|Vachaspati]], like [[Isaac Newton|Newton]], interpreted light as composed of minute particles emitted by substances and striking the eye."}}
<br>{{quote|"Two systems of [[Ấn Độ giáo|Hindu]] thought propound [[physics|physical]] theories suggestively similar to those of [[Ancient Greece|Greece]]. [[Kanada]], founder of the [[Vaisheshika]] philosophy, held that the world was composed of atoms as many in kind as the various elements. The [[Jainism|Jains]] more nearly approximated to [[Democritos|Democritus]] by teaching that all atoms were of the same kind, producing different effects by diverse modes of combinations. Kanada believed [[light]] và [[heat]] to be varieties of the same substance; [[Udayana]] taught that all heat comes from the sun; and [[Vācaspati Miśra|Vachaspati]], like [[Isaac Newton|Newton]], interpreted light as composed of minute particles emitted by substances and striking the eye."}}
</ref> Theo quyển ''De Rerum Natura'' (Nguồn gốc vạn vật) của triết gia La Mã [[Lucretius]]<ref>{{chú thích web
</ref> Theo quyển ''De Rerum Natura'' (Nguồn gốc vạn vật) của triết gia La Mã [[Lucretius]]<ref>{{chú thích web
Dòng 33: Dòng 37:
|url=http://classics.mit.edu/Carus/nature_things.html
|url=http://classics.mit.edu/Carus/nature_things.html
|accessdate=ngày 9 tháng 1 năm 2007}}
|accessdate=ngày 9 tháng 1 năm 2007}}
</ref> thì nguyên tử luận Hy Lạp ra đời khoảng năm 440 trước Công nguyên khi hai triết gia [[Democritos|Democritus]] và [[Leucippus]] cho rằng ''"atom"'' (nguyên tử) là thành phần cơ bản nhất không thể chia nhỏ của vật chất. Cùng thời này ở Ấn Độ, triết gia [[Kanada]] cũng phát biểu tương tự trong tác phẩm ''[[Vaisheshika]]''.<ref name = Will/> Tuy vậy, phát biểu của Kanada cũng như Democritus chỉ có ý nghĩa triết học do thiếu dữ liệu thực nghiệm và cũng do thiếu chứng minh một cách khoa học nên ý niệm tồn tại nguyên tử rất dễ bị bác bỏ. Tại Hy Lạp [[Aristoteles|Aristotle]] đã phản bác sự tồn tại của nguyên tử, còn trường phái Vaisheshika ở Ấn Độ cũng bị phản đối một thời gian dài.{{Fact|date=tháng 8 năm 2007}}
</ref> thì nguyên tử luận Hy Lạp ra đời khoảng năm 440 trước Công nguyên khi hai triết gia [[Democritos|Democritus]] và [[Leucippus]] cho rằng ''"atom"'' ([[nguyên tử]]) là thành phần cơ bản nhất không thể chia nhỏ của vật chất. Cùng thời này ở Ấn Độ, triết gia [[Kanada]] cũng phát biểu tương tự trong tác phẩm ''[[Vaisheshika]]''.<ref name="Will" /> Tuy vậy, phát biểu của Kanada cũng như Democritus chỉ có ý nghĩa triết học do thiếu dữ liệu thực nghiệm và cũng do thiếu chứng minh một cách khoa học nên ý niệm tồn tại nguyên tử rất dễ bị bác bỏ. Tại Hy Lạp [[Aristoteles|Aristotle]] đã phản bác sự tồn tại của nguyên tử, còn trường phái Vaisheshika ở Ấn Độ cũng bị phản đối một thời gian dài.{{Fact|date=tháng 8 năm 2007}}


Đa số các phương pháp luận mới mẻ hơn được [[Pliny the Elder]] mô tả trong quyển ''[[Naturalis Historia]]''. Ông cố gắng giải thích chúng kèm với việc thực hiện nhiều quan sát tinh tế về trạng thái khoáng vật.
Đa số các phương pháp luận mới mẻ hơn được [[Gaius Plinius Secundus|Pliny già]] mô tả trong quyển ''[[Naturalis Historia]]''. Ông cố gắng giải thích chúng kèm với việc thực hiện nhiều quan sát tinh tế về trạng thái khoáng vật.


===Ngành luyện kim hưng khởi===
===Ngành luyện kim hưng khởi===
Dòng 44: Dòng 48:
=== Hòn đá của triết gia và sự hưng khởi của giả kim thuật ===
=== Hòn đá của triết gia và sự hưng khởi của giả kim thuật ===
{{chính|Giả kim thuật}}
{{chính|Giả kim thuật}}
Tiền nhân rất quan tâm tìm ra giải pháp biến các kim loại rẻ tiền chẳng hạn đồng hay sắt thành vàng. Họ cho rằng có một loại vật liệu gọi là "[[hòn đá của triết gia]]" giúp làm được việc đó, và cũng từ đó đã dẫn đến một ngành khoa học sơ khai là [[giả kim thuật]]. Ngành này xuất hiện trong nhiều nền văn minh xưa, là sự pha trộn của [[triết học]], thuyết thần bí và phương pháp khoa học sơ khai.{{Fact|date=tháng 8 năm 2007}}[[Tập tin:William Fettes Douglas - The Alchemist.jpg|nhỏ|trái|Tác phẩm "Renel nhà giả kim", của Sir William Douglas, năm 1853]]Ngành giả kim không chỉ tìm cách biến kim loại thành vàng mà còn gắng tìm cách chế ra nhiều dược phẩm để cải thiện sức khỏe con người, thậm chí cố tìm được thuốc trường sinh giúp con người trẻ mãi. Các nhà giả kim còn cho rằng có một chất gọi là "ê te" (tiếng Anh: ether) trong không khí giúp duy trì sự sống mọi loài. [[Isaac Newton]] trong đời nghiên cứu của ông cũng làm một vài việc theo cách thức giả kim thuật. {{Fact|date=tháng 8 năm 2007}}
[[Tập tin:William Fettes Douglas - The Alchemist.jpg|nhỏ|trái|Tác phẩm "Renel nhà giả kim", của Sir William Douglas, năm 1853]]
Tiền nhân rất quan tâm tìm ra giải pháp biến các kim loại rẻ tiền chẳng hạn đồng hay sắt thành vàng. Họ cho rằng có một loại vật liệu gọi là "[[hòn đá của triết gia]]" giúp làm được việc đó, và cũng từ đó đã dẫn đến một ngành khoa học sơ khai là [[giả kim thuật]]. Ngành này xuất hiện trong nhiều nền văn minh xưa, là sự pha trộn của [[triết học]], thuyết thần bí và phương pháp khoa học sơ khai.{{Fact|date=tháng 8 năm 2007}}

Ngành giả kim không chỉ tìm cách biến kim loại thành vàng mà còn gắng tìm cách chế ra nhiều dược phẩm để cải thiện sức khỏe con người, thậm chí cố tìm được thuốc trường sinh giúp con người trẻ mãi. Các nhà giả kim còn cho rằng có một chất gọi là "ê te" (tiếng Anh: ether) trong không khí giúp duy trì sự sống mọi loài. [[Isaac Newton]] trong đời nghiên cứu của ông cũng làm một vài việc theo cách thức giả kim thuật. {{Fact|date=tháng 8 năm 2007}}


=== Nan đề của nhà giả kim ===
=== Nan đề của nhà giả kim ===
Dòng 56: Dòng 57:
==Từ giả kim thuật đến hóa học==
==Từ giả kim thuật đến hóa học==
===Những nhà hóa học tiên phong===
===Những nhà hóa học tiên phong===
[[Tập tin:Jabir ibn Hayyan.jpg|nhỏ|[[Jabir ibn Hayyan]] (Geber) là một nhà giả kim thuật người A Rập có những nghiên cứu thực nghiệm đã đặt nền móng cho [[Hóa học]].]]
{{xem thêm|Timeline of chemistry|Alchemy and chemistry in Islam}}
Người [[Hồi giáo]] thuộc khu vực A rập đã dịch nhiều công trình cổ Hy lạp sang tiếng A rập, họ cũng thử nghiệm một số ý tưởng theo phương pháp khoa học.<ref>[http://realscience.breckschool.org/upper/fruen/files/Enrichmentarticles/files/History.html The History of Ancient Chemistry]</ref> Dù đã biết là [[phương pháp khoa học]] hiện đại được phát triển dần dần và tương đối chậm nhưng vài nhà hóa học Hồi giáo như ông [[Jabir ibn Hayyan]] (ở châu Âu gọi là ông "Geber"), đã bắt đầu sử dụng phương pháp khoa học trong hóa học từ thế kỉ thứ 9, và ông được đa số xem là "ông tổ ngành hóa học".<ref>{{chú thích|first=Zygmunt S.|last=Derewenda|year=2007|title=On wine, chirality and crystallography|journal=Acta Crystallographica Section A: Foundations of Crystallography|volume=64|pages=246–258 [247]}}</ref><ref>John Warren (2005). "War and the Cultural Heritage of Iraq: a sadly mismanaged affair", ''Third World Quarterly'', Volume 26, Issue 4 & 5, p. 815-830.
[[Tập tin:Jabir ibn Hayyan.jpg|nhỏ|phải|[[Geber|Jabir ibn Hayyan]] (Geber), an [[Alchemy and chemistry in Islam|Arabic alchemist]] whose experimental research laid the foundations for chemistry.]]
</ref><ref>Dr. A. Zahoor (1997), [http://www.unhas.ac.id/~rhiza/saintis/haiyan.html JABIR IBN HAIYAN (Jabir)], [[University of Indonesia]]</ref><ref>Paul Vallely, [http://news.independent.co.uk/world/science_technology/article350594.ece How Islamic inventors changed the world], ''[[The Independent]]''</ref> Ông đưa ra cách tiếp cận có hệ thống dựa trên thực nghiệm trong quá trình nghiên cứu khoa học.<ref name="Kraus">Kraus, Paul, Jâbir ibn Hayyân, ''Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque,''. Cairo (1942-1943). Repr. By Fuat Sezgin, (Natural Sciences in Islam. 67-68), Frankfurt. 2002:
Người [[Hồi giáo]] thuộc khu vực A rập đã dịch nhiều công trình cổ Hy lạp sang tiếng A rập, họ cũng thử nghiệm một số ý tưởng theo phương pháp khoa học.<ref>[http://realscience.breckschool.org/upper/fruen/files/Enrichmentarticles/files/History.html The History of Ancient Chemistry]</ref> Dù đã biết là [[phương pháp khoa học]] hiện đại được phát triển dần dần và tương đối chậm nhưng vài nhà hóa học Hồi giáo như ông [[Geber|Jabir ibn Hayyan]] (ở châu Âu gọi là ông "Geber"), đã bắt đầu sử dụng phương pháp khoa học trong hóa học từ thế kỉ thứ 9, và ông được đa số xem là "ông tổ ngành hóa học".<ref>{{chú thích|first=Zygmunt S.|last=Derewenda|year=2007|title=On wine, chirality and crystallography|journal=Acta Crystallographica Section A: Foundations of Crystallography|volume=64|pages=246–258 [247]}}</ref><ref>
John Warren (2005). "War and the Cultural Heritage of Iraq: a sadly mismanaged affair", ''Third World Quarterly'', Volume 26, Issue 4 & 5, p. 815-830.
</ref><ref>Dr. A. Zahoor (1997), [http://www.unhas.ac.id/~rhiza/saintis/haiyan.html JABIR IBN HAIYAN (Jabir)], [[University of Indonesia]]</ref><ref>Paul Vallely, [http://news.independent.co.uk/world/science_technology/article350594.ece How Islamic inventors changed the world], ''[[The Independent]]''</ref> Ông đưa ra cách tiếp cận có hệ thống dựa trên thực nghiệm trong quá trình nghiên cứu khoa học.<ref name=Kraus>Kraus, Paul, Jâbir ibn Hayyân, ''Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque,''. Cairo (1942-1943). Repr. By Fuat Sezgin, (Natural Sciences in Islam. 67-68), Frankfurt. 2002:
{{quote|"To form an idea of the historical place of Jabir’s alchemy and to tackle the problem of its sources, it is advisable to compare it with what remains to us of the alchemical literature in the [[Greek language]]. One knows in which miserable state this literature reached us. Collected by [[Byzantine science|Byzantine scientists]] from the tenth century, the corpus of the Greek alchemists is a cluster of incoherent fragments, going back to all the times since the third century until the end of the Middle Ages."}}
{{quote|"To form an idea of the historical place of Jabir’s alchemy and to tackle the problem of its sources, it is advisable to compare it with what remains to us of the alchemical literature in the [[Greek language]]. One knows in which miserable state this literature reached us. Collected by [[Byzantine science|Byzantine scientists]] from the tenth century, the corpus of the Greek alchemists is a cluster of incoherent fragments, going back to all the times since the third century until the end of the Middle Ages."}}
{{quote|"The efforts of Berthelot and Ruelle to put a little order in this mass of literature led only to poor results, and the later researchers, among them in particular Mrs. Hammer-Jensen, Tannery, Lagercrantz, von Lippmann, Reitzenstein, Ruska, Bidez, Festugiere and others, could make clear only few points of detail…}}
{{quote|"The efforts of Berthelot and Ruelle to put a little order in this mass of literature led only to poor results, and the later researchers, among them in particular Mrs. Hammer-Jensen, Tannery, Lagercrantz, von Lippmann, Reitzenstein, Ruska, Bidez, Festugiere and others, could make clear only few points of detail…}}
Dòng 66: Dòng 65:
{{quote|It is different with Jabir’s alchemy. The relatively clear description of the processes and the alchemical apparatuses, the methodical classification of the substances, mark an experimental spirit which is extremely far away from the weird and odd esotericism of the Greek texts. The theory on which Jabir supports his operations is one of clearness and of an impressive unity. More than with the other Arab authors, one notes with him a balance between theoretical teaching and practical teaching, between the ''[[Ilm (Arabic)|`ilm]]'' and the ''`amal''. In vain one would seek in the Greek texts a work as systematic as that which is presented for example in the ''Book of Seventy''."}}
{{quote|It is different with Jabir’s alchemy. The relatively clear description of the processes and the alchemical apparatuses, the methodical classification of the substances, mark an experimental spirit which is extremely far away from the weird and odd esotericism of the Greek texts. The theory on which Jabir supports his operations is one of clearness and of an impressive unity. More than with the other Arab authors, one notes with him a balance between theoretical teaching and practical teaching, between the ''[[Ilm (Arabic)|`ilm]]'' and the ''`amal''. In vain one would seek in the Greek texts a work as systematic as that which is presented for example in the ''Book of Seventy''."}}
([[cf.]] {{chú thích web|author=[[Ahmad Y Hassan]]|title=A Critical Reassessment of the Geber Problem: Part Three|url=http://www.history-science-technology.com/Geber/Geber%203.htm|accessdate=ngày 9 tháng 8 năm 2008}})</ref>, và sáng tạo ra nồi chưng cất, phân tích thành phần hóa học nhiều chất, phân biệt [[bazơ|kiềm]] và [[axít|axit]], bào chế nhiều loại thuốc.<ref>[[Will Durant]] (1980). ''The Age of Faith ([[The Story of Civilization]], Volume 4)'', p. 162-186. Simon & Schuster. ISBN 0671012002.</ref>
([[cf.]] {{chú thích web|author=[[Ahmad Y Hassan]]|title=A Critical Reassessment of the Geber Problem: Part Three|url=http://www.history-science-technology.com/Geber/Geber%203.htm|accessdate=ngày 9 tháng 8 năm 2008}})</ref>, và sáng tạo ra nồi chưng cất, phân tích thành phần hóa học nhiều chất, phân biệt [[bazơ|kiềm]] và [[axít|axit]], bào chế nhiều loại thuốc.<ref>[[Will Durant]] (1980). ''The Age of Faith ([[The Story of Civilization]], Volume 4)'', p. 162-186. Simon & Schuster. ISBN 0671012002.</ref>
[[Tập tin:Platin löst sich in heißem Königswasser.jpg|nhỏ|216x216px|[[Nước cường toan]] là chất ăn mòn mạnh, có khả năng hòa tan được [[vàng]] và [[Platin|bạch kim]] nhưng lại không hòa tan được [[tantan]], [[iridi]] và các kim loại thụ động khác. Nước cường toan là hỗn hợp của [[axit nitric]] đậm đặc và [[axit clohydric]] đậm đặc. Axit clohydric được [[Jabir ibn Hayyan|Gaber]] phát hiện vào khoảng năm 800, bằng cách trộn [[muối ăn]] (có thành phần chủ yếu là [[natri clorua]]) vào dung dịch [[Axit sulfuric|axit sunfuric]]. ]]

Nhiều nhà hóa học Hồi giáo khác cũng có ảnh hưởng quan trọng, như [[Ja'far al-Sadiq]],<ref name="Strasburg">Research Committee of [[University of Strasbourg|Strasburg University]], ''Imam Jafar Ibn Muhammad As-Sadiq A.S. The Great Muslim Scientist and Philosopher'', translated by Kaukab Ali Mirza, 2000. Willowdale Ont. ISBN 0969949014.</ref> [[Al-Kindi|Alkindus]],<ref>Felix Klein-Frank (2001), "Al-Kindi", in [[Oliver Leaman]] & [[Hossein Nasr]], ''History of Islamic Philosophy'', p. 174. London: [[Routledge]].</ref> [[Abū al-Rayhān al-Bīrūnī]],<ref>Michael E. Marmura (1965). "''An Introduction to Islamic Cosmological Doctrines. Conceptions of Nature and Methods Used for Its Study by the Ikhwan Al-Safa'an, Al-Biruni, and Ibn Sina'' by Seyyed [[Hossein Nasr]]", ''Speculum'' '''40''' (4), p. 744-746.</ref> [[Avicenna]]<ref>[[Robert Briffault]] (1938). ''The Making of Humanity'', p. 196-197.</ref> cũng như [[Ibn Khaldun]] đều phản bác thuật giả kim và lý luận kiểu "hòn đá của triết gia" về sự chuyển đổi của kim loại; còn [[Nasīr al-Dīn al-Tūsī|Tusi]] đưa ra [[định luật bảo toàn khối lượng]] ở dạng sơ khai khi ông cho rằng vật chất chỉ thay đổi trạng thái chứ không biến mất.<ref>Farid Alakbarov (Summer 2001). [http://azer.com/aiweb/categories/magazine/92_folder/92_articles/92_tusi.html A 13th-Century Darwin? Tusi's Views on Evolution], ''Azerbaijan International'' '''9''' (2).</ref> Ông [[Muhammad ibn Zakarīya Rāzi|Rhazes]] là người đầu tiên bác bỏ thuyết của Aristotle về bốn nguyên tố vật chất cơ bản, cũng là một trong những người đặt nền tảng cho hóa học hiện đại qua việc sử dụng phòng thí nghiệm kiểu như ngày nay, thậm chí ông đã tạo ra hơn 20 dụng cụ thí nghiệm mà phần nhiều vẫn còn được dùng đến giờ.<ref>G. Stolyarov II (2002), "Rhazes: The Thinking Western Physician", ''The Rational Argumentator'', Issue VI.</ref>
Nhiều nhà hóa học Hồi giáo khác cũng có ảnh hưởng quan trọng, như [[Ja'far al-Sadiq]],<ref name="Strasburg">Research Committee of [[University of Strasbourg|Strasburg University]], ''Imam Jafar Ibn Muhammad As-Sadiq A.S. The Great Muslim Scientist and Philosopher'', translated by Kaukab Ali Mirza, 2000. Willowdale Ont. ISBN 0969949014.</ref> [[Al-Kindi|Alkindus]],<ref>Felix Klein-Frank (2001), "Al-Kindi", in [[Oliver Leaman]] & [[Hossein Nasr]], ''History of Islamic Philosophy'', p. 174. London: [[Routledge]].</ref> [[Abū al-Rayhān al-Bīrūnī]],<ref>Michael E. Marmura (1965). "''An Introduction to Islamic Cosmological Doctrines. Conceptions of Nature and Methods Used for Its Study by the Ikhwan Al-Safa'an, Al-Biruni, and Ibn Sina'' by Seyyed [[Hossein Nasr]]", ''Speculum'' '''40''' (4), p. 744-746.</ref> [[Avicenna]]<ref>[[Robert Briffault]] (1938). ''The Making of Humanity'', p. 196-197.</ref> cũng như [[Ibn Khaldun]] đều phản bác thuật giả kim và lý luận kiểu "hòn đá của triết gia" về sự chuyển đổi của kim loại; còn [[Nasīr al-Dīn al-Tūsī|Tusi]] đưa ra [[định luật bảo toàn khối lượng]] ở dạng sơ khai khi ông cho rằng vật chất chỉ thay đổi trạng thái chứ không biến mất.<ref>Farid Alakbarov (Summer 2001). [http://azer.com/aiweb/categories/magazine/92_folder/92_articles/92_tusi.html A 13th-Century Darwin? Tusi's Views on Evolution], ''Azerbaijan International'' '''9''' (2).</ref> Ông [[Muhammad ibn Zakarīya Rāzi|Rhazes]] là người đầu tiên bác bỏ thuyết của Aristotle về bốn nguyên tố vật chất cơ bản, cũng là một trong những người đặt nền tảng cho hóa học hiện đại qua việc sử dụng phòng thí nghiệm kiểu như ngày nay, thậm chí ông đã tạo ra hơn 20 dụng cụ thí nghiệm mà phần nhiều vẫn còn được dùng đến giờ.<ref>G. Stolyarov II (2002), "Rhazes: The Thinking Western Physician", ''The Rational Argumentator'', Issue VI.</ref>


[[Tập tin:Georgius Agricola.jpg|nhỏ|150px|trái|Agricola, tác giả quyển ''De re metallica'']]
[[Tập tin:Georgius Agricola.jpg|nhỏ|150px|trái|Georgius Agricola (1494 - 1554), tác giả quyển ''De re metallica''. Ông là cha đẻ của ngành [[Khoáng vật học]].]]
Từ khi nhiều tác phẩm giả kim thuật từ thế giới A rập được dịch sang tiếng Latin một số nhà giả kim nghiêm túc ở châu Âu đã theo đuổi môn này có định hướng và ngày càng làm tốt hơn. Như ông [[Paracelsus]] (1493-1541) đã bác bỏ thuyết bốn nguyên tố của Aristotle và chỉ bằng kiến thức về hóa chất và thuốc của mình đã tạo ra một môn kết hợp giả kim và khoa học, dù ông chưa làm cho những thí nghiệm của bản thân có tính khoa học đầy đủ hơn. Lý thuyết mở rộng của ông chỉ ra cách tạo chất mới từ [[thủy ngân]] và [[lưu huỳnh]] mà ông gọi là "dầu lưu huỳnh". Có lẽ đây chính là chất [[dimethyl ether]] ngày nay, vốn chẳng có thủy ngân lẫn lưu huỳnh. {{Fact|date=tháng 8 năm 2007}}
Từ khi nhiều tác phẩm giả kim thuật từ thế giới A rập được dịch sang tiếng Latin một số nhà giả kim nghiêm túc ở châu Âu đã theo đuổi môn này có định hướng và ngày càng làm tốt hơn. Như ông [[Paracelsus]] (1493-1541) đã bác bỏ thuyết bốn nguyên tố của Aristotle và chỉ bằng kiến thức về hóa chất và thuốc của mình đã tạo ra một môn kết hợp giả kim và khoa học, dù ông chưa làm cho những thí nghiệm của bản thân có tính khoa học đầy đủ hơn. Lý thuyết mở rộng của ông chỉ ra cách tạo chất mới từ [[thủy ngân]] và [[lưu huỳnh]] mà ông gọi là "dầu lưu huỳnh". Có lẽ đây chính là chất đimêtyl ete (có công thức cấu tạo là H<sub>3</sub>COCH<sub>3</sub>) ngày nay, vốn chẳng có thủy ngân lẫn lưu huỳnh. {{Fact|date=tháng 8 năm 2007}}


Những cố gắng cải tiến phương pháp lọc tách quặng lấy kim loại là nguồn thông tin quan trọng với nhiều nhà hóa học tiên phong, chẳng hạn ông [[Georg Agricola]] (1494–1555) có tác phẩm kinh điển [[De re metallica]] ấn hành năm 1556 bàn về vấn đề này. Ông đã lược bỏ những yếu tố kì bí trong ngành và đưa ra nền tảng thực hành để người khác có thể làm theo. Tác phẩm này đề cập nhiều loại lò nấu quặng, tạo ra sự quan tâm nghiên cứu về khoáng chất cũng như hợp chất của chúng.
Những cố gắng cải tiến phương pháp lọc tách quặng lấy kim loại là nguồn thông tin quan trọng với nhiều nhà hóa học tiên phong, chẳng hạn ông [[Georg Agricola]] (1494–1555) có tác phẩm kinh điển [[De re metallica]] ấn hành năm 1556 bàn về vấn đề này. Ông đã lược bỏ những yếu tố kì bí trong ngành và đưa ra nền tảng thực hành để người khác có thể làm theo. Tác phẩm này đề cập nhiều loại lò nấu quặng, tạo ra sự quan tâm nghiên cứu về khoáng chất cũng như hợp chất của chúng.


Năm 1605 ông [[Francis Bacon]] công bố tác phẩm ''The Proficience and Advancement of Learning'' được coi là mở đầu cho lý thuyết về phương pháp khoa học.<ref>{{chú thích web | last = Asarnow | first = Herman | title = Sir Francis Bacon: Empiricism | work = An Image-Oriented Introduction to Backgrounds for English Renaissance Literature | publisher = University of Portland | date = ngày 8 tháng 8 năm 2005 | url = http://faculty.up.edu/asarnow/eliz4.htm | accessdate = ngày 22 tháng 2 năm 2007}}</ref> Năm 1615 [[Jean Beguin]] công bố tác phẩm ''Tyrocinium Chymicum'' là giáo trình hóa học thuộc loại đầu tiên có nêu ra khái niệm [[phản ứng hóa học]].<ref>Crosland, M.P. (1959). "The use of diagrams as chemical 'equations' in the lectures of [[William Cullen]] và [[Joseph Black]]." ''Annals of Science, Vol 15, No. 2'', Jun.</ref>
Năm 1605 ông [[Francis Bacon]] công bố tác phẩm ''The Proficience and Advancement of Learning'' được coi là mở đầu cho lý thuyết về phương pháp khoa học.<ref>{{chú thích web | last = Asarnow | first = Herman | title = Sir Francis Bacon: Empiricism | work = An Image-Oriented Introduction to Backgrounds for English Renaissance Literature | publisher = University of Portland | date = ngày 8 tháng 8 năm 2005 | url = http://faculty.up.edu/asarnow/eliz4.htm | accessdate = ngày 22 tháng 2 năm 2007}}</ref> Năm 1615 [[Jean Beguin]] công bố tác phẩm ''Tyrocinium Chymicum'' là giáo trình hóa học thuộc loại đầu tiên có nêu ra khái niệm [[phản ứng hóa học]].<ref>Crosland, M.P. (1959). "The use of diagrams as chemical 'equations' in the lectures of [[William Cullen]] và [[Joseph Black]]." ''Annals of Science, Vol 15, No. 2'', Jun.</ref>[[Tập tin:robert boyle.jpg|nhỏ|190px|phải|[[Robert Boyle]], người tiên phong của hóa học hiện đại ]]


Ông [[Robert Boyle]] (1627–1691) được xem là người xác lập lại phương pháp có tính khoa học cho ngành giả kim, đồng thời làm cho ngành hóa học không chỉ dừng ở thuật giả kim nữa mà tách biệt ra và phát triển mạnh thêm.<ref>[http://understandingscience.ucc.ie/pages/sci_robertboyle.htm Robert Boyle]</ref> Ông theo nguyên tử luận nhưng thích gọi "nguyên tử" là ''corpuscle'' thay cho ''atoms''. Ông nhận định rằng ở mức độ nhỏ nhất của vật chất là nguyên tử thì tính chất của chúng được duy trì chứ không biến đổi. Ông còn phát minh ra [[định luật Boyle]], viết tác phẩm kinh điển ''[[The Sceptical Chymist]]'' có bàn đến thuyết nguyên tử của vật chất.
[[Robert Boyle]] (1627–1691) được xem là người xác lập lại phương pháp có tính khoa học cho ngành giả kim, đồng thời làm cho ngành hóa học không chỉ dừng ở thuật giả kim nữa mà tách biệt ra và phát triển mạnh thêm.<ref>[http://understandingscience.ucc.ie/pages/sci_robertboyle.htm Robert Boyle]</ref> Ông theo nguyên tử luận nhưng thích gọi "nguyên tử" là ''corpuscle'' thay cho ''atoms''. Ông nhận định rằng ở mức độ nhỏ nhất của vật chất là nguyên tử thì tính chất của chúng được duy trì chứ không biến đổi. Ông còn phát minh ra [[định luật Boyle]], viết tác phẩm kinh điển ''[[The Sceptical Chymist]]'' có bàn đến thuyết nguyên tử của vật chất.


Năm 1754 [[Joseph Black]] tách được khí [[cacbon điôxít|carbon dioxide]] mà ông gọi là "không khí cô đặc".<ref>{{chú thích web | last = Cooper | first = Alan | title = Joseph Black | work = History of Glasgow University Chemistry Department | publisher = University of Glasgow Department of Chemistry | year = 1999 | url = http://www.chem.gla.ac.uk/dept/black.htm | accessdate = ngày 23 tháng 2 năm 2006}}</ref> [[Carl Wilhelm Scheele]] và [[Joseph Priestly]] độc lập nhau tìm ra khí [[ôxy|ôxi]] mà họ gọi là "khí cháy".<ref>{{chú thích web | title = Joseph Priestley | work = Chemical Achievers: The Human Face of Chemical Sciences | publisher = Chemical Heritage Foundation | year = 2005 | url = http://www.chemheritage.org/classroom/chemach/forerunners/priestley.html | accessdate = ngày 22 tháng 2 năm 2007}}</ref><ref>{{chú thích web | title = Carl Wilhelm Scheele | work = History of Gas Chemistry | publisher = Center for Microscale Gas Chemistry, Creighton University | date = ngày 11 tháng 9 năm 2005 | url = http://mattson.creighton.edu/History_Gas_Chemistry/Scheele.html | accessdate = ngày 23 tháng 2 năm 2007}}</ref> [[Joseph Proust]] đưa ra định luật xác nhận các nguyên tố kết hợp nhau theo một tỉ lệ nguyên làm thành hợp chất.<ref>{{chú thích web | title = Proust, Joseph Louis (1754-1826) | work = 100 Distinguished Chemists | publisher = European Association for Chemical and Molecular Science | year = 2005 | url = http://www.euchems.org/Distinguished/19thCentury/proustlouis.asp | accessdate = ngày 23 tháng 2 năm 2007}}</ref> Năm 1800 ông [[Alessandro Volta]] là người đầu tiên chế ra [[pin (định hướng)|pin]] và thiết lập quy tắc cho môn [[điện hóa học]].<ref>{{chú thích web | title = Inventor Alessandro Volta Biography | work = The Great Idea Finder | publisher = The Great Idea Finder | year = 2005 | url = http://www.ideafinder.com/history/inventors/volta.htm | accessdate = ngày 23 tháng 2 năm 2007}}</ref> Năm 1803 [[John Dalton]] nêu [[định luật Dalton]] mô tả quan hệ giữa các thành phần trong một hỗn hợp khí cùng ảnh hưởng của áp suất từng loại lên tổng thể hỗn hợp.<ref name=dalton>{{chú thích web | title = John Dalton | work = Chemical Achievers: The Human Face of Chemical Sciences | publisher = Chemical Heritage Foundation | year = 2005 | url = http://www.chemheritage.org/classroom/chemach/periodic/dalton.html | accessdate = ngày 22 tháng 2 năm 2007}}</ref> Ở Nga, ông [[Mikhail Vasilyevich Lomonosov|Mikhail Lomonosov]] là người khai mở ngành hóa học đồng thời bác bỏ lý thuyết quá trình cháy và nêu ra thuyết [[động học]] chất khí. Ông xem nhiệt là một loại chuyển động, đề xuất ý tưởng về định luật bảo toàn vật chất.
Năm 1754 [[Joseph Black]] tách được [[Cacbon điôxít|khí cacbonic]] mà ông gọi là "không khí cô đặc".<ref>{{chú thích web | last = Cooper | first = Alan | title = Joseph Black | work = History of Glasgow University Chemistry Department | publisher = University of Glasgow Department of Chemistry | year = 1999 | url = http://www.chem.gla.ac.uk/dept/black.htm | accessdate = ngày 23 tháng 2 năm 2006}}</ref> [[Carl Wilhelm Scheele]] và [[Joseph Priestly]] độc lập nhau tìm ra khí [[ôxy|ôxi]] mà họ gọi là "khí cháy".<ref>{{chú thích web | title = Joseph Priestley | work = Chemical Achievers: The Human Face of Chemical Sciences | publisher = Chemical Heritage Foundation | year = 2005 | url = http://www.chemheritage.org/classroom/chemach/forerunners/priestley.html | accessdate = ngày 22 tháng 2 năm 2007}}</ref><ref>{{chú thích web | title = Carl Wilhelm Scheele | work = History of Gas Chemistry | publisher = Center for Microscale Gas Chemistry, Creighton University | date = ngày 11 tháng 9 năm 2005 | url = http://mattson.creighton.edu/History_Gas_Chemistry/Scheele.html | accessdate = ngày 23 tháng 2 năm 2007}}</ref> [[Joseph Proust]] đưa ra định luật xác nhận các nguyên tố kết hợp nhau theo một tỉ lệ nguyên làm thành hợp chất.<ref>{{chú thích web | title = Proust, Joseph Louis (1754-1826) | work = 100 Distinguished Chemists | publisher = European Association for Chemical and Molecular Science | year = 2005 | url = http://www.euchems.org/Distinguished/19thCentury/proustlouis.asp | accessdate = ngày 23 tháng 2 năm 2007}}</ref> Năm 1800 ông [[Alessandro Volta]] là người đầu tiên chế ra [[pin (định hướng)|pin]] và thiết lập quy tắc cho môn [[điện hóa học]].<ref>{{chú thích web | title = Inventor Alessandro Volta Biography | work = The Great Idea Finder | publisher = The Great Idea Finder | year = 2005 | url = http://www.ideafinder.com/history/inventors/volta.htm | accessdate = ngày 23 tháng 2 năm 2007}}</ref> Năm 1803 [[John Dalton]] nêu [[định luật Dalton]] mô tả quan hệ giữa các thành phần trong một hỗn hợp khí cùng ảnh hưởng của áp suất từng loại lên tổng thể hỗn hợp.<ref name="dalton">{{chú thích web | title = John Dalton | work = Chemical Achievers: The Human Face of Chemical Sciences | publisher = Chemical Heritage Foundation | year = 2005 | url = http://www.chemheritage.org/classroom/chemach/periodic/dalton.html | accessdate = ngày 22 tháng 2 năm 2007}}</ref> Ở Nga, ông [[Mikhail Vasilyevich Lomonosov|Mikhail Lomonosov]] là người khai mở ngành hóa học đồng thời bác bỏ lý thuyết quá trình cháy và nêu ra thuyết [[động học]] chất khí. Ông xem nhiệt là một loại chuyển động, đề xuất ý tưởng về định luật bảo toàn vật chất.


===Antoine Lavoisier===
===Antoine Lavoisier===
Dòng 85: Dòng 84:


===Tranh luận về sự sống - Hóa học hữu cơ===
===Tranh luận về sự sống - Hóa học hữu cơ===
Sau khi xác định được bản chất sự cháy lại nảy sinh tranh luận về bản chất sự sống cũng như khác biệt căn bản giữa chất vô cơ và hữu cơ khởi từ việc ông [[Friedrich Wöhler]] tình cờ tổng hợp được [[u rê]] từ chất vô cơ năm 1828. Trước đó chưa một chất hữu cơ nào được tổng hợp từ nguồn hữu, nên phát hiện này đã dẫn đến sự ra đời của hóa học hữu cơ và đến cuối thế kỉ 19 các nhà khoa học đã tổng hợp thành công hàng trăm hợp chất hữu cơ, như màu nhuộm, [[aspirin]].
Sau khi xác định được bản chất sự cháy lại nảy sinh tranh luận về bản chất sự sống cũng như khác biệt căn bản giữa chất vô cơ và hữu cơ khởi từ việc ông [[Friedrich Wöhler]] tình cờ tổng hợp được [[urê]] (có công thức cấu tạo là CO(NH<sub>2</sub>)<sub>2</sub>) từ chất vô cơ năm 1828. Trước thế kỉ XIX, vẫn tồn tại [[Chủ nghĩa duy tâm|thuyết duy tâm]] cho rằng hợp chất hữu cơ được sinh ra trong các [[Sinh vật|cơ thể sống]] và con người không thể tổng hợp [[Hợp chất hữu cơ|chất hữu cơ]] từ nguồn [[Hợp chất vô|vô cơ]] nên phát hiện này đã giáng đòn mạnh vào thuyết duy tâm và thúc đẩy sự ra đời của [[Hóa hữu cơ|hóa học hữu cơ]]. Đến cuối thế kỉ 19 các nhà khoa học đã tổng hợp thành công hàng trăm hợp chất hữu cơ, như [[Thuốc nhuộm|màu nhuộm]], [[aspirin]].
<!-- Chú thích -->

=== Bất đồng về nguyên tử luận sau thời Lavoisier===
=== Bất đồng về nguyên tử luận sau thời Lavoisier===
[[Tập tin:Dalton John Chantrey bust.jpg|phải|150px|nhỏ|Bust of [[John Dalton]] by [[Francis Legatt Chantrey|Chantrey]]]]
[[Tập tin:Dalton John Chantrey bust.jpg|phải|150px|nhỏ|Bust of [[John Dalton]] by [[Francis Legatt Chantrey|Chantrey]]]]
Dòng 106: Dòng 103:


==Bảng tuần hoàn==
==Bảng tuần hoàn==
[[Tập tin:Mendeleev Photographische Gesellschaft 3.jpg|nhỏ|213x213px|trái|[[Dmitri Ivanovich Mendeleev|Dmitri Mendeleev]] (1834 - 1897), nhà khoa học người Nga đã sáng tạo ra [[Bảng tuần hoàn|bảng tuần hoàn các nguyên tố hóa học]].]]
{{chính|Lịch sử bảng tuần hoàn}}
[[Tập tin:Mendeleev Photographische Gesellschaft 3.jpg|nhỏ|200px|trái|[[Dmitri Ivanovich Mendeleev|Dmitri Mendeleev]], responsible for the [[periodic table]].]]
[[Tập tin:Periodic-table.jpg|nhỏ|352x352px|Bảng tuần hoàn các [[nguyên tố hóa học]].]]

For many decades, the list of known chemical elements had been [[List of chemical elements by their discovery#19th century|steadily increasing]]. A great breakthrough in making sense of this long list (as well as in understanding the internal structure of atoms as discussed below) was [[Dmitri Ivanovich Mendeleev|Dmitri Mendeleev]] và [[Lothar Meyer]]'s development of the [[periodic table]], and particularly Mendeleev's use of it to predict the existence and the properties of [[gecmani|germanium]], [[gali|gallium]], and [[scandium]], which Mendeleev called [[Mendeleev's predicted elements|ekasilicon, ekaaluminium, and ekaboron]] respectively. Mendeleev made his prediction in 1870; gallium was discovered in 1875, and was found to have roughly the same properties that Mendeleev predicted for it.{{Fact|date=tháng 8 năm 2007}}
For many decades, the list of known chemical elements had been [[List of chemical elements by their discovery#19th century|steadily increasing]]. A great breakthrough in making sense of this long list (as well as in understanding the internal structure of atoms as discussed below) was [[Dmitri Ivanovich Mendeleev|Dmitri Mendeleev]] và [[Lothar Meyer]]'s development of the [[periodic table]], and particularly Mendeleev's use of it to predict the existence and the properties of [[gecmani|germanium]], [[gali|gallium]], and [[scandium]], which Mendeleev called [[Mendeleev's predicted elements|ekasilicon, ekaaluminium, and ekaboron]] respectively. Mendeleev made his prediction in 1870; gallium was discovered in 1875, and was found to have roughly the same properties that Mendeleev predicted for it.{{Fact|date=tháng 8 năm 2007}}



Phiên bản lúc 15:03, ngày 8 tháng 7 năm 2017

Lịch sử ngành hóa học có lẽ được hình thành cách đây khoảng 4000 năm khi người Ai Cập cổ đại lần đầu dùng kĩ thuật tổng hợp hóa học dạng "ướt".[1]Đến thời kì 1000 năm trước Công nguyên một số nền văn minh đã dùng những kĩ thuật hóa học vẫn còn giá trị nền tảng cho đến tận ngày nay, như: luyện thép từ quặng sắt, làm đồ gốm, lên men rượu bia, tạo ra màu để sơn và trang trí, chiết xuất tinh chất từ thực vật làm thuốc hay nước hoa, làm phô mai, nhuộm quần áo, thuộc da, chế biến mỡ thành xà bông, làm ra thủy tinh, chế tạo hợp kim chẳng hạn đồng.

Cách tiếp cận đến bản chất của thế giới vật chất và những chuyển hóa trong đó theo kiểu triết học thời cổ đại cũng như theo kiểu giả kim thuật đã không thành công, nhưng bằng cách làm thực nghiệm và ghi lại kết quả các nhà giả kim đã đặt nền móng cho phương pháp khoa học sau này. Năm 1661, Robert Boyle bằng công trình The Sceptical Chymist đã tách biệt hẳn giả kim thuật và hóa học, mở ra thời kì mới cho hóa học hiện đại.

Hóa học trở thành ngành khoa học theo nghĩa đầy đủ khi Antoine Lavoisier nêu ra định luật bảo toàn khối lượng, đòi hỏi các đại lượng hóa học phải được định lượng và đo lường cẩn thận. Vì thế mà dù cả giả kim thuật lẫn hóa học đều quan tâm đến bản chất của vật chất và sự chuyển hóa của chúng nhưng chỉ có nhà hóa học, chứ không phải nhà giả kim, dùng phương pháp khoa học trong nghiên cứu. Lịch sử hóa học thường được gắn với lịch sử nhiệt động học, nhất là từ công trình của Willard Gibbs.[2]

Thời cổ đại

Từ lửa đến Nguyên tử luận

Democritus, người đề xuất nguyên tử luận

Điều đang còn tranh luận là việc tự tạo ra lửa phải chăng là phản ứng hóa học đầu tiên con người có thể kiểm soát được. Do thiếu hiểu biết có khoa học mà trong hàng triệu năm nhân loại xem lửa như là một thực thể thần bí có khả năng biến chất này thành chất khác (chẳng hạn đốt cháy gỗ thành than, biến nước sôi thành hơi), tạo ánh sáng và hơi nóng. Lửa có vai trò tối quan trọng trong xã hội sơ khai, dùng cho những sinh hoạt cơ bản như nấu nướng, soi sáng, sưởi ấm đến những kĩ thuật cao thời đó như làm đồ gốm, nung gạch hay nấu chảy kim loại làm vật dụng.

Những triết gia cổ đại trong khi cố gắng hợp lý hóa những vấn đề, chẳng hạn tại sao các chất khác nhau thì có đặc tính (màu, mùi, mật độ) khác nhau, cũng tồn tại ở những trạng thái (khí, lỏng, rắn) khác nhau, đồng thời có phản ứng khác nhau lúc tiếp xúc với môi trường (nước, lửa, nhiệt độ thay đổi) xung quanh, đã đưa ra lý thuyết sơ khởi về tự nhiên hay cụ thể là về hóa học. Những triết thuyết liên quan đến hóa học có thể nhận thấy ở bất kì nền văn minh cổ đại nào, và tựu trung đều cố gắng chỉ ra vài nguyên tố cơ bản cấu thành mọi chất khác tồn tại trong tự nhiên. Từ những khái niệm cụ thể như không khí, nước, đất, lửa, ánh sáng đến trừu tượng hơn như ý thức, thiên đường là những nguyên tố cơ bản rất phổ biến trong nhiều nền văn minh cổ như Hy Lạp, Ấn Độ, Maya, Trung Hoa.[cần dẫn nguồn]

Nguồn gốc của nguyên tử luận được coi là từ Hy Lạp và Ấn Độ cổ.[3] Theo quyển De Rerum Natura (Nguồn gốc vạn vật) của triết gia La Mã Lucretius[4] viết năm 50 trước Công nguyên [5] thì nguyên tử luận Hy Lạp ra đời khoảng năm 440 trước Công nguyên khi hai triết gia DemocritusLeucippus cho rằng "atom" (nguyên tử) là thành phần cơ bản nhất không thể chia nhỏ của vật chất. Cùng thời này ở Ấn Độ, triết gia Kanada cũng phát biểu tương tự trong tác phẩm Vaisheshika.[3] Tuy vậy, phát biểu của Kanada cũng như Democritus chỉ có ý nghĩa triết học do thiếu dữ liệu thực nghiệm và cũng do thiếu chứng minh một cách khoa học nên ý niệm tồn tại nguyên tử rất dễ bị bác bỏ. Tại Hy Lạp Aristotle đã phản bác sự tồn tại của nguyên tử, còn trường phái Vaisheshika ở Ấn Độ cũng bị phản đối một thời gian dài.[cần dẫn nguồn]

Đa số các phương pháp luận mới mẻ hơn được Pliny già mô tả trong quyển Naturalis Historia. Ông cố gắng giải thích chúng kèm với việc thực hiện nhiều quan sát tinh tế về trạng thái khoáng vật.

Ngành luyện kim hưng khởi

Nhờ lửa con người đã chế tạo thủy tinh, tinh chế kim loại mở đường cho ngành luyện kim ra đời.[cần dẫn nguồn] Nhiều phương pháp tinh chế kim loại được tìm ra trong thời kì đầu của ngành này, còn vàng đã được xem là kim loại quý từ năm 2600 trước Công nguyên ở Ai Cập cổ đại. Việc tìm ra hợp kim dẫn đến thời đại đồ đồng, kế tiếp là thời đại đồ sắt ghi nhận sự cải tiến vũ khí chiến đấu tốt hơn cho quân đội và chính vũ khí thường là lợi thế quyết định trong chiến tranh thời này. Ấn Độ cổ đại là nơi tạo bước tiến triển quan trọng trong ngành luyện kim, giả kim thuật.[6]

Hòn đá của triết gia và sự hưng khởi của giả kim thuật

Tiền nhân rất quan tâm tìm ra giải pháp biến các kim loại rẻ tiền chẳng hạn đồng hay sắt thành vàng. Họ cho rằng có một loại vật liệu gọi là "hòn đá của triết gia" giúp làm được việc đó, và cũng từ đó đã dẫn đến một ngành khoa học sơ khai là giả kim thuật. Ngành này xuất hiện trong nhiều nền văn minh xưa, là sự pha trộn của triết học, thuyết thần bí và phương pháp khoa học sơ khai.[cần dẫn nguồn]

Tác phẩm "Renel nhà giả kim", của Sir William Douglas, năm 1853

Ngành giả kim không chỉ tìm cách biến kim loại thành vàng mà còn gắng tìm cách chế ra nhiều dược phẩm để cải thiện sức khỏe con người, thậm chí cố tìm được thuốc trường sinh giúp con người trẻ mãi. Các nhà giả kim còn cho rằng có một chất gọi là "ê te" (tiếng Anh: ether) trong không khí giúp duy trì sự sống mọi loài. Isaac Newton trong đời nghiên cứu của ông cũng làm một vài việc theo cách thức giả kim thuật. [cần dẫn nguồn]

Nan đề của nhà giả kim

Theo cách đánh giá hiện nay thì ngành giả kim thời xưa có nhiều hạn chế, như việc đặt tên cho các chất mới tìm được không theo một hệ thống nào dẫn đến tình trạng có thể cùng một thuật ngữ lại chỉ nhiều đối tượng khác nhau, do đó được hiểu khác nhau.

Kế đến là không có phương pháp nào đủ tiêu chuẩn khoa học để tái tạo các thực nghiệm đã làm. Thậm chí nhiều nhà giả kim đã đưa cả những thông số không mấy phù hợp vào nghiên cứu của mình, như là thời gian theo thủy triều hay theo tuần trăng. Nhiều yếu tố huyền bí cũng như từ ngữ bí truyền dùng trong ngành giả kim dù hữu dụng nhưng không thể làm nhà giả kim lờ đi nan đề là họ cũng không biết nhiều về chúng. Từ đầu thế kỉ 14, cái mã ngoài của giả kim càng lúc càng lộ rõ và người ta bắt đầu nghi ngờ phương pháp này.[cần dẫn nguồn] Thực tế nhân loại cần một phương pháp có khoa học sao cho một thí nghiệm có thể được lặp lại bởi nhiều người khác nhau, còn kết quả thí nghiệm cần được ghi lại bằng một ngôn ngữ rõ ràng để chỉ ra điều gì đã biết hay chưa biết.

Từ giả kim thuật đến hóa học

Những nhà hóa học tiên phong

Jabir ibn Hayyan (Geber) là một nhà giả kim thuật người A Rập có những nghiên cứu thực nghiệm đã đặt nền móng cho Hóa học.

Người Hồi giáo thuộc khu vực A rập đã dịch nhiều công trình cổ Hy lạp sang tiếng A rập, họ cũng thử nghiệm một số ý tưởng theo phương pháp khoa học.[7] Dù đã biết là phương pháp khoa học hiện đại được phát triển dần dần và tương đối chậm nhưng vài nhà hóa học Hồi giáo như ông Jabir ibn Hayyan (ở châu Âu gọi là ông "Geber"), đã bắt đầu sử dụng phương pháp khoa học trong hóa học từ thế kỉ thứ 9, và ông được đa số xem là "ông tổ ngành hóa học".[8][9][10][11] Ông đưa ra cách tiếp cận có hệ thống dựa trên thực nghiệm trong quá trình nghiên cứu khoa học.[12], và sáng tạo ra nồi chưng cất, phân tích thành phần hóa học nhiều chất, phân biệt kiềmaxit, bào chế nhiều loại thuốc.[13]

Nước cường toan là chất ăn mòn mạnh, có khả năng hòa tan được vàngbạch kim nhưng lại không hòa tan được tantan, iridi và các kim loại thụ động khác. Nước cường toan là hỗn hợp của axit nitric đậm đặc và axit clohydric đậm đặc. Axit clohydric được Gaber phát hiện vào khoảng năm 800, bằng cách trộn muối ăn (có thành phần chủ yếu là natri clorua) vào dung dịch axit sunfuric.

Nhiều nhà hóa học Hồi giáo khác cũng có ảnh hưởng quan trọng, như Ja'far al-Sadiq,[14] Alkindus,[15] Abū al-Rayhān al-Bīrūnī,[16] Avicenna[17] cũng như Ibn Khaldun đều phản bác thuật giả kim và lý luận kiểu "hòn đá của triết gia" về sự chuyển đổi của kim loại; còn Tusi đưa ra định luật bảo toàn khối lượng ở dạng sơ khai khi ông cho rằng vật chất chỉ thay đổi trạng thái chứ không biến mất.[18] Ông Rhazes là người đầu tiên bác bỏ thuyết của Aristotle về bốn nguyên tố vật chất cơ bản, cũng là một trong những người đặt nền tảng cho hóa học hiện đại qua việc sử dụng phòng thí nghiệm kiểu như ngày nay, thậm chí ông đã tạo ra hơn 20 dụng cụ thí nghiệm mà phần nhiều vẫn còn được dùng đến giờ.[19]

Georgius Agricola (1494 - 1554), tác giả quyển De re metallica. Ông là cha đẻ của ngành Khoáng vật học.

Từ khi nhiều tác phẩm giả kim thuật từ thế giới A rập được dịch sang tiếng Latin một số nhà giả kim nghiêm túc ở châu Âu đã theo đuổi môn này có định hướng và ngày càng làm tốt hơn. Như ông Paracelsus (1493-1541) đã bác bỏ thuyết bốn nguyên tố của Aristotle và chỉ bằng kiến thức về hóa chất và thuốc của mình đã tạo ra một môn kết hợp giả kim và khoa học, dù ông chưa làm cho những thí nghiệm của bản thân có tính khoa học đầy đủ hơn. Lý thuyết mở rộng của ông chỉ ra cách tạo chất mới từ thủy ngânlưu huỳnh mà ông gọi là "dầu lưu huỳnh". Có lẽ đây chính là chất đimêtyl ete (có công thức cấu tạo là H3COCH3) ngày nay, vốn chẳng có thủy ngân lẫn lưu huỳnh. [cần dẫn nguồn]

Những cố gắng cải tiến phương pháp lọc tách quặng lấy kim loại là nguồn thông tin quan trọng với nhiều nhà hóa học tiên phong, chẳng hạn ông Georg Agricola (1494–1555) có tác phẩm kinh điển De re metallica ấn hành năm 1556 bàn về vấn đề này. Ông đã lược bỏ những yếu tố kì bí trong ngành và đưa ra nền tảng thực hành để người khác có thể làm theo. Tác phẩm này đề cập nhiều loại lò nấu quặng, tạo ra sự quan tâm nghiên cứu về khoáng chất cũng như hợp chất của chúng.

Năm 1605 ông Francis Bacon công bố tác phẩm The Proficience and Advancement of Learning được coi là mở đầu cho lý thuyết về phương pháp khoa học.[20] Năm 1615 Jean Beguin công bố tác phẩm Tyrocinium Chymicum là giáo trình hóa học thuộc loại đầu tiên có nêu ra khái niệm phản ứng hóa học.[21]

Robert Boyle, người tiên phong của hóa học hiện đại

Robert Boyle (1627–1691) được xem là người xác lập lại phương pháp có tính khoa học cho ngành giả kim, đồng thời làm cho ngành hóa học không chỉ dừng ở thuật giả kim nữa mà tách biệt ra và phát triển mạnh thêm.[22] Ông theo nguyên tử luận nhưng thích gọi "nguyên tử" là corpuscle thay cho atoms. Ông nhận định rằng ở mức độ nhỏ nhất của vật chất là nguyên tử thì tính chất của chúng được duy trì chứ không biến đổi. Ông còn phát minh ra định luật Boyle, viết tác phẩm kinh điển The Sceptical Chymist có bàn đến thuyết nguyên tử của vật chất.

Năm 1754 Joseph Black tách được khí cacbonic mà ông gọi là "không khí cô đặc".[23] Carl Wilhelm ScheeleJoseph Priestly độc lập nhau tìm ra khí ôxi mà họ gọi là "khí cháy".[24][25] Joseph Proust đưa ra định luật xác nhận các nguyên tố kết hợp nhau theo một tỉ lệ nguyên làm thành hợp chất.[26] Năm 1800 ông Alessandro Volta là người đầu tiên chế ra pin và thiết lập quy tắc cho môn điện hóa học.[27] Năm 1803 John Dalton nêu định luật Dalton mô tả quan hệ giữa các thành phần trong một hỗn hợp khí cùng ảnh hưởng của áp suất từng loại lên tổng thể hỗn hợp.[28] Ở Nga, ông Mikhail Lomonosov là người khai mở ngành hóa học đồng thời bác bỏ lý thuyết quá trình cháy và nêu ra thuyết động học chất khí. Ông xem nhiệt là một loại chuyển động, đề xuất ý tưởng về định luật bảo toàn vật chất.

Antoine Lavoisier

Tác phẩm Chân dung Lavoisier và vợ của Jacques-Louis David

Tuy rằng nhiều nhà hóa học tiên phong từ thời cổ Hy Lạp, cổ Ai Cập đến thời kì A rập, Ba Tư có đóng góp cơ bản cho ngành nhưng ông Antoine Lavoisier mới được xem là người khai sinh hóa học hiện đại. Ông đưa ra định luật bảo toàn khối lượng, còn gọi là định luật Lavoisier năm 1789 và nhờ đó ngành hóa học có được phương pháp định lượng nghiêm ngặt giúp thiết lập những dự đoán tin cậy.[29] Ông còn nổi danh bởi lý thuyết quá trình cháy đề xuất năm 1783.

Tranh luận về sự sống - Hóa học hữu cơ

Sau khi xác định được bản chất sự cháy lại nảy sinh tranh luận về bản chất sự sống cũng như khác biệt căn bản giữa chất vô cơ và hữu cơ khởi từ việc ông Friedrich Wöhler tình cờ tổng hợp được urê (có công thức cấu tạo là CO(NH2)2) từ chất vô cơ năm 1828. Trước thế kỉ XIX, vẫn tồn tại thuyết duy tâm cho rằng hợp chất hữu cơ được sinh ra trong các cơ thể sống và con người không thể tổng hợp chất hữu cơ từ nguồn vô cơ nên phát hiện này đã giáng đòn mạnh vào thuyết duy tâm và thúc đẩy sự ra đời của hóa học hữu cơ. Đến cuối thế kỉ 19 các nhà khoa học đã tổng hợp thành công hàng trăm hợp chất hữu cơ, như màu nhuộm, aspirin.

Bất đồng về nguyên tử luận sau thời Lavoisier

Bust of John Dalton by Chantrey

Throughout the 19th century, chemistry was divided between those who followed the atomic theory of John Dalton and those who did not, such as Wilhelm OstwaldErnst Mach.[30] Although such proponents of the atomic theory as Amedeo AvogadroLudwig Boltzmann made great advances in explaining the behavior of gases, this dispute was not finally settled until Jean Perrin's experimental investigation of Einstein's atomic explanation of Brownian motion in the first decade of the 20th century.[30]

Well before the dispute had been settled, many had already applied the concept of atomism to chemistry. A major example was the ion theory of Svante Arrhenius which anticipated ideas about atomic substructure that did not fully develop until the 20th century. Michael Faraday was another early worker, whose major contribution to chemistry was electrochemistry, in which (among other things) a certain quantity of electricity during electrolysis or electrodeposition of metals was shown to be associated with certain quantities of chemical elements, and fixed quantities of the elements therefore with each other, in specific ratios.[cần dẫn nguồn] These findings, like those of Dalton's combining ratios, were early clues to the atomic nature of matter.

Bảng tuần hoàn

Dmitri Mendeleev (1834 - 1897), nhà khoa học người Nga đã sáng tạo ra bảng tuần hoàn các nguyên tố hóa học.
Bảng tuần hoàn các nguyên tố hóa học.

For many decades, the list of known chemical elements had been steadily increasing. A great breakthrough in making sense of this long list (as well as in understanding the internal structure of atoms as discussed below) was Dmitri MendeleevLothar Meyer's development of the periodic table, and particularly Mendeleev's use of it to predict the existence and the properties of germanium, gallium, and scandium, which Mendeleev called ekasilicon, ekaaluminium, and ekaboron respectively. Mendeleev made his prediction in 1870; gallium was discovered in 1875, and was found to have roughly the same properties that Mendeleev predicted for it.[cần dẫn nguồn]

Định nghĩa hiện đại về Hóa học

Classically, before the 20th century, chemistry was defined as the science of the nature of matter and its transformations. It was therefore clearly distinct from physics which was not concerned with such dramatic transformation of matter. Moreover, in contrast to physics, chemistry was not using much of mathematics. Even some were particularly reluctant to using mathematics within chemistry. For example, Auguste Comte wrote in 1830:

Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry.... if mathematical analysis should ever hold a prominent place in chemistry -- an aberration which is happily almost impossible -- it would occasion a rapid and widespread degeneration of that science.

However, in the second part of the 19th century, the situation changed and August Kekule wrote in 1867:

I rather expect that we shall someday find a mathematico-mechanical explanation for what we now call atoms which will render an account of their properties.

After the discovery by Ernest RutherfordNiels Bohr of the atomic structure in 1912, and by MariePierre Curie of radioactivity, scientists had to change their viewpoint on the nature of matter. The experience acquired by chemists was no longer pertinent to the study of the whole nature of matter but only to aspects related to the electron cloud surrounding the atomic nuclei and the movement of the latter in the electric field induced by the former (see Born-Oppenheimer approximation). The range of chemistry was thus restricted to the nature of matter around us in conditions which are not too far from standard conditions for temperature and pressure and in cases where the exposure to radiation is not too different from the natural microwave, visible or UV radiations on Earth. Chemistry was therefore re-defined as the science of matter that deals with the composition, structure, and properties of substances and with the transformations that they undergo.[cần dẫn nguồn] However the meaning of matter used here relates explicitly to substances made of atoms and molecules, disregarding the matter within the atomic nuclei and its nuclear reaction or matter within highly ionized plasmas. Nevertheless the field of chemistry is still, on our human scale, very broad and the claim that chemistry is everywhere is accurate.

Hóa học lượng tử

Some view the birth of quantum chemistry in the discovery of the Schrödinger equation and its application to the hydrogen atom in 1926.[cần dẫn nguồn] However, the 1927 article of Walter HeitlerFritz London[31] is often recognised as the first milestone in the history of quantum chemistry.[32] This is the first application of quantum mechanics to the diatomic hydrogen molecule, and thus to the phenomenon of the chemical bond. In the following years much progress was accomplished by Edward Teller, Robert S. Mulliken, Max Born, J. Robert Oppenheimer, Linus Pauling, Erich Hückel, Douglas Hartree, Vladimir Aleksandrovich Fock, to cite a few.[cần dẫn nguồn]

Still, skepticism remained as to the general power of quantum mechanics applied to complex chemical systems.[cần dẫn nguồn] The situation around 1930 is described by Paul Dirac:[33]

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

Hence the quantum mechanical methods developed in the 1930s and 1940s are often referred to as theoretical molecular or atomic physics to underline the fact that they were more the application of quantum mechanics to chemistry and spectroscopy than answers to chemically relevant questions."

In the 1940s many physicists turned from molecular or atomic physics to nuclear physics (like J. Robert Oppenheimer or Edward Teller). In 1951, a milestone article in quantum chemistry is the seminal paper of Clemens C. J. Roothaan on Roothaan equations.[34] It opened the avenue to the solution of the self-consistent field equations for small molecules like hydrogen or nitrogen. Those computations were performed with the help of tables of integrals which were computed on the most advanced computers of the time.[cần dẫn nguồn]

Sinh học phân tử và Hóa sinh

By the mid 20th century, in principle, the integration of physics and chemistry was extensive, with chemical properties explained as the result of the electronic structure of the atom; Linus Pauling's book on The Nature of the Chemical Bond used the principles of quantum mechanics to deduce bond angles in ever-more complicated molecules. However, though some principles deduced from quantum mechanics were able to predict qualitatively some chemical features for biologically relevant molecules, they were, till the end of the 20th century, more a collection of rules, observations, and recipes than rigorous ab initio quantitative methods.[cần dẫn nguồn]

Diagrammatic representation of some key structural features of DNA

This heuristic approach triumphed in 1953 when James WatsonFrancis Crick deduced the double helical structure of DNA by constructing models constrained by and informed by the knowledge of the chemistry of the constituent parts and the X-ray diffraction patterns obtained by Rosalind Franklin.[35] This discovery lead to an explosion of research into the biochemistry of life.

In the same year, the Miller-Urey experiment demonstrated that basic constituents of protein, simple amino acids, could themselves be built up from simpler molecules in a simulation of primordial processes on Earth. Though many questions remain about the true nature of the origin of life, this was the first attempt by chemists to study hypothetical processes in the laboratory under controlled conditions.[cần dẫn nguồn]

In 1983 Kary Mullis devised a method for the in-vitro amplification of DNA, known as the polymerase chain reaction (PCR), which revolutionized the chemical processes used in the laboratory to manipulate it. PCR could be used to synthesize specific pieces of DNA and made possible the sequencing of DNA of organisms, which culminated in the huge human genome project.

An important piece in the double helix puzzle was solved by one of Pauling's student Matthew MeselsonFrank Stahl, the result of their collaboration (Meselson-Stahl experiment) has been called as "the most beatiful experiment in biology".

They used a centrifugation technique that sorted molecules according to differences in weight. Because nitrogen atoms are a component of DNA, they were labelled and therefore tracked in replication in bacteria.

Ngành hóa chất

Sau thế kỷ XIX đã có sự gia tăng lớn trong việc khai thác dầu mỏ từ ​​trái đất để sản xuất một loạt các hóa chất và thay thế phần lớn sử dụng dầu cá voi, các kho than đá và các cửa hàng hải quân được sử dụng trước đây. Sản xuất quy mô lớn và sàng lọc các nguồn cung cấp xăng dầu cung cấp nhiên liệu lỏng như xăng, dầu diesel, dung môi, chất bôi trơn, nhựa đường, sáp và sản xuất nhiều nguyên liệu thông thường của thế giới hiện đại như sợi tổng hợp, chất dẻo, Chất tẩy rửa, dược phẩm, chất kết dính và ammonia làm phân bón và cho các mục đích sử dụng khác. Nhiều trong số những chất xúc tác mới cần thiết này và việc sử dụng công nghệ hóa học để sản xuất hiệu quả về chi phí của chúng.

Vào giữa thế kỷ XX, việc kiểm soát cấu trúc điện tử của vật liệu bán dẫn đã được thực hiện chính xác bằng việc tạo ra các thỏi lớn tinh thể đơn cực tinh khiết của silic và gecmani. Kiểm soát chính xác thành phần hóa học của chúng bằng cách pha tạp với các nguyên tố khác tạo ra bóng bán dẫn thể rắn năm 1951 và tạo ra các mạch tích hợp nhỏ để sử dụng trong các thiết bị điện tử, đặc biệt là máy tính.

Xem thêm

Lịch sử và các thời kì

Danh sách nhà hóa học

listed chronologically:

Ghi chú

  1. ^ First chemists, 13 tháng 2 năm 1999, New Scientist
  2. ^ Selected Classic Papers from the History of Chemistry
  3. ^ a b Will Durant (1935), Our Oriental Heritage:

    "Two systems of Hindu thought propound physical theories suggestively similar to those of Greece. Kanada, founder of the Vaisheshika philosophy, held that the world was composed of atoms as many in kind as the various elements. The Jains more nearly approximated to Democritus by teaching that all atoms were of the same kind, producing different effects by diverse modes of combinations. Kanada believed lightheat to be varieties of the same substance; Udayana taught that all heat comes from the sun; and Vachaspati, like Newton, interpreted light as composed of minute particles emitted by substances and striking the eye."

  4. ^ Simpson, David (29 June 2005). “Lucretius (c. 99 - c. 55 BCE)”. The Internet History of Philosophy. Truy cập ngày 9 tháng 1 năm 2007. Kiểm tra giá trị ngày tháng trong: |date= (trợ giúp)
  5. ^ Lucretius (50 BCE). “de Rerum Natura (On the Nature of Things)”. The Internet Classics Archive. Massachusetts Institute of Technology. Truy cập ngày 9 tháng 1 năm 2007. Kiểm tra giá trị ngày tháng trong: |date= (trợ giúp)
  6. ^ Will Durant wrote in The Story of Civilization I: Our Oriental Heritage:

    "Something has been said about the chemical excellence of cast iron in ancient India, and about the high industrial development of the Gupta times, when India was looked to, even by Imperial Rome, as the most skilled of the nations in such chemical industries as dyeing, tanning, soap-making, glasscement... By the sixth century the Hindus were far ahead of Europe in industrial chemistry; they were masters of calcinations, distillation, sublimation, steaming, fixation, the production of light without heat, the mixing of anestheticsoporific powders, and the preparation of metallic salts, compoundsalloys. The tempering of steel was brought in ancient India to a perfection unknown in Europe till our own times; King Porus is said to have selected, as a specially valuable gift from Alexander, not gold or silver, but thirty pounds of steel. The Moslems took much of this Hindu chemical science and industry to the Near EastEurope; the secret of manufacturing "Damascus" blades, for example, was taken by the Arabs from the Persians, and by the Persians from India."

  7. ^ The History of Ancient Chemistry
  8. ^ Derewenda, Zygmunt S. (2007), “On wine, chirality and crystallography”, Acta Crystallographica Section A: Foundations of Crystallography, 64: 246–258 [247]
  9. ^ John Warren (2005). "War and the Cultural Heritage of Iraq: a sadly mismanaged affair", Third World Quarterly, Volume 26, Issue 4 & 5, p. 815-830.
  10. ^ Dr. A. Zahoor (1997), JABIR IBN HAIYAN (Jabir), University of Indonesia
  11. ^ Paul Vallely, How Islamic inventors changed the world, The Independent
  12. ^ Kraus, Paul, Jâbir ibn Hayyân, Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque,. Cairo (1942-1943). Repr. By Fuat Sezgin, (Natural Sciences in Islam. 67-68), Frankfurt. 2002:

    "To form an idea of the historical place of Jabir’s alchemy and to tackle the problem of its sources, it is advisable to compare it with what remains to us of the alchemical literature in the Greek language. One knows in which miserable state this literature reached us. Collected by Byzantine scientists from the tenth century, the corpus of the Greek alchemists is a cluster of incoherent fragments, going back to all the times since the third century until the end of the Middle Ages."

    "The efforts of Berthelot and Ruelle to put a little order in this mass of literature led only to poor results, and the later researchers, among them in particular Mrs. Hammer-Jensen, Tannery, Lagercrantz, von Lippmann, Reitzenstein, Ruska, Bidez, Festugiere and others, could make clear only few points of detail…

    The study of the Greek alchemists is not very encouraging. An even surface examination of the Greek texts shows that a very small part only was organized according to true experiments of laboratory: even the supposedly technical writings, in the state where we find them today, are unintelligible nonsense which refuses any interpretation.

    It is different with Jabir’s alchemy. The relatively clear description of the processes and the alchemical apparatuses, the methodical classification of the substances, mark an experimental spirit which is extremely far away from the weird and odd esotericism of the Greek texts. The theory on which Jabir supports his operations is one of clearness and of an impressive unity. More than with the other Arab authors, one notes with him a balance between theoretical teaching and practical teaching, between the `ilm and the `amal. In vain one would seek in the Greek texts a work as systematic as that which is presented for example in the Book of Seventy."

    (cf. Ahmad Y Hassan. “A Critical Reassessment of the Geber Problem: Part Three”. Truy cập ngày 9 tháng 8 năm 2008.)

  13. ^ Will Durant (1980). The Age of Faith (The Story of Civilization, Volume 4), p. 162-186. Simon & Schuster. ISBN 0671012002.
  14. ^ Research Committee of Strasburg University, Imam Jafar Ibn Muhammad As-Sadiq A.S. The Great Muslim Scientist and Philosopher, translated by Kaukab Ali Mirza, 2000. Willowdale Ont. ISBN 0969949014.
  15. ^ Felix Klein-Frank (2001), "Al-Kindi", in Oliver Leaman & Hossein Nasr, History of Islamic Philosophy, p. 174. London: Routledge.
  16. ^ Michael E. Marmura (1965). "An Introduction to Islamic Cosmological Doctrines. Conceptions of Nature and Methods Used for Its Study by the Ikhwan Al-Safa'an, Al-Biruni, and Ibn Sina by Seyyed Hossein Nasr", Speculum 40 (4), p. 744-746.
  17. ^ Robert Briffault (1938). The Making of Humanity, p. 196-197.
  18. ^ Farid Alakbarov (Summer 2001). A 13th-Century Darwin? Tusi's Views on Evolution, Azerbaijan International 9 (2).
  19. ^ G. Stolyarov II (2002), "Rhazes: The Thinking Western Physician", The Rational Argumentator, Issue VI.
  20. ^ Asarnow, Herman (ngày 8 tháng 8 năm 2005). “Sir Francis Bacon: Empiricism”. An Image-Oriented Introduction to Backgrounds for English Renaissance Literature. University of Portland. Truy cập ngày 22 tháng 2 năm 2007.
  21. ^ Crosland, M.P. (1959). "The use of diagrams as chemical 'equations' in the lectures of William CullenJoseph Black." Annals of Science, Vol 15, No. 2, Jun.
  22. ^ Robert Boyle
  23. ^ Cooper, Alan (1999). “Joseph Black”. History of Glasgow University Chemistry Department. University of Glasgow Department of Chemistry. Truy cập ngày 23 tháng 2 năm 2006.
  24. ^ “Joseph Priestley”. Chemical Achievers: The Human Face of Chemical Sciences. Chemical Heritage Foundation. 2005. Truy cập ngày 22 tháng 2 năm 2007.
  25. ^ “Carl Wilhelm Scheele”. History of Gas Chemistry. Center for Microscale Gas Chemistry, Creighton University. ngày 11 tháng 9 năm 2005. Truy cập ngày 23 tháng 2 năm 2007.
  26. ^ “Proust, Joseph Louis (1754-1826)”. 100 Distinguished Chemists. European Association for Chemical and Molecular Science. 2005. Truy cập ngày 23 tháng 2 năm 2007.
  27. ^ “Inventor Alessandro Volta Biography”. The Great Idea Finder. The Great Idea Finder. 2005. Truy cập ngày 23 tháng 2 năm 2007.
  28. ^ “John Dalton”. Chemical Achievers: The Human Face of Chemical Sciences. Chemical Heritage Foundation. 2005. Truy cập ngày 22 tháng 2 năm 2007.
  29. ^ Lavoisier, Antoine (1743-1794) -- from Eric Weisstein's World of Scientific Biography, ScienceWorld
  30. ^ a b Pullman, Bernard (2004). The Atom in the History of Human Thought. Reisinger, Axel biên dịch. USA: Oxford University Press Inc.
  31. ^ W. HeitlerF. London, Wechselwirkung neutraler Atome und Homöopolare Bindung nach der Quantenmechanik, Z. Physik, 44, 455 (1927).
  32. ^ Quantum chemistry
  33. ^ P.A.M. Dirac, Quantum Mechanics of Many-Electron Systems, Proc. R. Soc. London, A 123, 714 (1929).
  34. ^ C.C.J. Roothaan, A Study of Two-Center Integrals Useful in Calculations on Molecular Structure, J. Chem. Phys., 19, 1445 (1951).
  35. ^ Watson, J. and Crick, F., "Molecular Structure of Nucleic Acids" Nature, April 25, 1953, p 737–8

Tham khảo

Liên kết ngoài