Bước tới nội dung

Khác biệt giữa bản sửa đổi của “Nghịch đảo phép cộng”

 
Nghịch đảo phép cộng được định nghĩa như là [[phần tử nghịch đảo]] của [[phép toán hai ngôi]] - phép cộng, nhằm cho phép việc [[tổng quát hóa]] đối với các đối tượng toán học mà không phải là các số. Như đối với mọi phép toán nghịch đảo, việc nghịch đảo hai lần [[Hàm đồng nhất|không làm thay đổi đối tượng]]: {{Math|−(−''x'') {{=}} ''x''}}.
 
==Các ví dụ thông thường==
Đối với một số và, nói chung, trong mọi vành, nghịch đảo phép cộng có thể được tính bằng cách nhân với -1; đó là, -n = -1 × n. Ví dụ về vành các số là [[số nguyên]], [[số hữu tỷ]], [[số thực]], và [[số phức]].
 
== Xem thêm ==