Khác biệt giữa bản sửa đổi của “Cơ học lượng tử”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
Không có tóm lược sửa đổi
Không có tóm lược sửa đổi
Dòng 56: Dòng 56:
Ở đây <math>H</math> là [[toán tử Hamilton (cơ học lượng tử)|toán tử Hamilton]], đại lượng quan sát được tương ứng với [[năng lượng|tổng năng lượng]] của hệ, và <math>\hbar</math> là [[hằng số Planck]] thu gọn. Hằng số <math>i\hbar</math> được đưa ra sao cho toán tử Hamilton trong cơ học lượng tử trở thành [[cơ học Hamilton|toán tử Hamilton cổ điển]] trong trường hợp hệ lượng tử có thể xấp xỉ bằng một hệ cổ điển; với khả năng có thể thực hiện được những phép xấp xỉ như thế trong một số giới hạn nhất định được gọi là [[nguyên lý tương ứng]].
Ở đây <math>H</math> là [[toán tử Hamilton (cơ học lượng tử)|toán tử Hamilton]], đại lượng quan sát được tương ứng với [[năng lượng|tổng năng lượng]] của hệ, và <math>\hbar</math> là [[hằng số Planck]] thu gọn. Hằng số <math>i\hbar</math> được đưa ra sao cho toán tử Hamilton trong cơ học lượng tử trở thành [[cơ học Hamilton|toán tử Hamilton cổ điển]] trong trường hợp hệ lượng tử có thể xấp xỉ bằng một hệ cổ điển; với khả năng có thể thực hiện được những phép xấp xỉ như thế trong một số giới hạn nhất định được gọi là [[nguyên lý tương ứng]].


Nghiệm của phương trình vi phân tuyến tính trên được cho bởi
:<math> \psi(t) = e^{-iHt/\hbar }\psi(0). </math>
Toán tử <math>U(t) = e^{-iHt/\hbar } </math> được gọi là toán tử tiến triển theo thời gian, và nó có một tính chất quan trọng đó là tính [[Unita (vật lý học)|unita]]. Sự tiến triển thời gian này là [[lý thuyết tất định|tất định]] theo nghĩa&nbsp;– khi cho một trạng thái lượng tử ban đầu <math>\psi(0)</math> &nbsp;– có thể dự đoán được cụ thể trạng thái lượng tử <math>\psi(t)</math> ở thời gian bất kỳ sau đó.<ref>{{cite book |title=Dreams Of A Final Theory: The Search for The Fundamental Laws of Nature |first1=Steven |last1=Weinberg |publisher=Random House |year=2010 |isbn=978-1-4070-6396-6 |page=[https://books.google.com/books?id=OLrZkgPsZR0C&pg=PT82 82] |url=https://books.google.com/books?id=OLrZkgPsZR0C}}</ref>


[[Tích vô hướng]] giữa hai vectơ trạng thái là một số phức được gọi là ''[[biên độ xác suất]]''. Trong một phép đo, xác suất mà một hệ suy sập từ một trạng thái ban đầu đã cho vào một trạng thái riêng đặc biệt nào đó bằng bình phương của [[giá trị tuyệt đối]] của biên độ xác suất giữa trạng thái đầu và cuối. Kết quả khả dĩ của phép đo là giá trị riêng của toán tử đều là các số thực (chính vì trị riêng phải là thực mà người ta phải chọn toán tử Hermit). Chúng ta có thể tìm thấy phân bố xác suất của một quan sát trong một trạng thái đã cho bằng việc xác định sự tách phổ của toán tử tương ứng. [[Nguyên lý bất định]] Heisenberg được biểu diễn bằng các toán tử tương ứng với các quan sát nhất định không [[giao hoán]] với nhau.


Phương trình Schrodinger tác động lên toàn bộ biên độ xác suất chứ không chỉ ảnh hưởng đến giá trị tuyệt đối của nó. Nếu giá trị tuyệt đối của biên độ xác suất mang các thông tin về xác suất, thì [[pha sóng|pha]] của nó mang các thông tin về [[giao thoa]] giữa các trạng thái lượng tử. Điều này thể hiện tính chất sóng của trạng thái lượng tử.
Phương trình Schrodinger tác động lên toàn bộ biên độ xác suất chứ không chỉ ảnh hưởng đến giá trị tuyệt đối của nó. Nếu giá trị tuyệt đối của biên độ xác suất mang các thông tin về xác suất, thì [[pha sóng|pha]] của nó mang các thông tin về [[giao thoa]] giữa các trạng thái lượng tử. Điều này thể hiện tính chất sóng của trạng thái lượng tử.

Phiên bản lúc 09:57, ngày 4 tháng 7 năm 2021

Các hàm sóng của electron trong một nguyên tử hydro tại các mức năng lượng khác nhau. Cơ học lượng tử không dự đoạn chính xác vị trí của một hạt trong không gian, nó chỉ tính ra giá trị xác suất có thể tìm thấy hạt tại các vị trí khác nhau.[1] Các vùng sáng màu hơn minh họa xác suất tìm thấy electron cao hơn.

Cơ học lượng tử là một lý thuyết cơ bản trong vật lý học miêu tả các tính chất vật lý của tự nhiên ở cấp độ nguyên tửhạt hạ nguyên tử.[2]:1.1 Nó là cơ sở của mọi lý thuyết vật lý lượng tử bao gồm hóa học lượng tử, lý thuyết trường lượng tử, công nghệ lượng tử, và khoa học thông tin lượng tử.

Vật lý cổ điển, miêu tả vật lý trước khi có thuyết tương đối và cơ học cổ điển, miêu tả nhiều khía cạnh của tự nhiên ở mức độ thông thường (vĩ mô), trong khi cơ học lượng tử giải thích các khía cạnh của tự nhiên ở mức vi mô (phân tử, nguyên tử và nhỏ hơn nguyên tử), mà ở phạm vi này cơ học cổ điển không còn miêu tả chính xác. Hầu hết các lý thuyết trong vật lý cổ điển có thể thu được từ cơ học lượng tử thông qua xấp xỉ ở quy mô lớn (vĩ mô).[3]

Cơ học lượng tử khác với cơ học cổ điển ở chỗ năng lượng, động lượng, mô men động lượng, và các đại lượng khác của một hệ đóng nhận các giá trị rời rạc (lượng tử hóa), các thực thể mang cả đặc trưng của hạt lẫn của sóng (lưỡng tính sóng hạt), và có những giới hạn về tính toán xác định độ chính xác của đại lượng vật lý trước mỗi phép đo đại lượng đó, cho bởi một tập hợp đầy đủ các điều kiện ban đầu (nguyên lý bất định).

Cơ học lượng tử dần dần xuất hiện từ các lý thuyết giải thích các quan sát thực nghiệm mà vật lý cổ điển không miêu tả được, như lời giải của Max Planck năm 1900 cho vấn đề bức xạ vật đen, và mối liên hệ giữa năng lượng và tần số tương ứng trong bài báo năm 1905 của Albert Einstein nhằm giải thích hiệu ứng quang điện. Những cố gắng ban đầu nhằm hiểu các hiện tượng vi mô, mà hiện nay gọi là "thuyết lượng tử cũ", đã dẫn đến sự phát triển đầy đủ của cơ học lượng tử vào giữa thập niên 1920 bởi Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born và những nhà khoa học khác. Lý thuyết hiện đại được hình thành và miêu tả bằng nhiều mô hình toán học đặc trưng. Một trong những mô hình này, một khái niệm toán học gọi là hàm sóng chứa đựng thông tin, dưới dạng các biên độ xác suất, về kết quả các phép đo năng lượng, động lượng và các tính chất vật lý khác của hạt.

Tổng quan và các khái niệm cơ bản

Cơ học lượng tử cho phép tính toán các tính chất và hành xử của các hệ thống vật lý. Nó thường được áp dụng cho các hệ thống vi mô: phân tử, nguyên tử và các hạt hạ nguyên tử. Nó đã được chứng minh là có thể miêu tả đúng cho các phân tử phức tạp chứa hàng nghìn nguyên tử,[4] nhưng ứng dụng của nó đối với con người làm nảy sinh các vấn đề triết học, chẳng hạn như thí nghiệm tưởng tượng bạn của Wigner, và ứng dụng của nó đối với toàn thể vũ trụ vẫn là suy đoán.[5] Các dự đoán của cơ học lượng tử đã được kiểm chứng bằng thực nghiệm với độ chính xác cực cao.[note 1]

Đặc điểm cơ bản của lý thuyết đó là nó không thể dự đoán một cách chắc chắn điều gì sẽ xảy ra mà chỉ đưa ra các xác suất cho mỗi khả năng. Về mặt toán học, xác suất được tìm thấy bằng cách lấy bình phương của giá trị tuyệt đối của một số phức, được gọi là biên độ xác suất. Đây được gọi là quy tắc Born, được đặt theo tên của nhà vật lý Max Born. Ví dụ, một hạt lượng tử như electron có thể được mô tả bằng một hàm sóng, hàm liên kết với mỗi điểm trong không gian tương ứng một biên độ xác suất. Áp dụng quy tắc Born cho các biên độ này sẽ cho một hàm mật độ xác suất cho vị trí mà electron sẽ được tìm thấy khi một thí nghiệm được thực hiện để đo nó. Đây là điều tốt nhất mà lý thuyết có thể làm được; nó không thể nói chắc chắn nơi electron sẽ được tìm thấy. Phương trình Schrödinger liên hệ tập hợp các biên độ xác suất liên quan đến một thời điểm với tập hợp các biên độ xác suất liên quan đến một thời điểm khác.

Một hệ quả của các quy tắc toán học của cơ học lượng tử là sự cân bằng về khả năng dự đoán giữa các đại lượng có thể đo lường khác nhau. Dạng nổi tiếng nhất của nguyên lý bất định này nói rằng bất kể một hạt lượng tử được chuẩn bị như thế nào hoặc các thí nghiệm được sắp xếp cẩn thận như thế nào, thì không thể đồng thời dự đoán chính xác được kết quả phép đo vị trí của hạt và kết quả phép đo động lượng của nó.

Một hệ quả khác của các quy tắc toán học của cơ học lượng tử là hiện tượng giao thoa lượng tử, thường được minh họa bằng thí nghiệm hai khe. Trong phiên bản cơ bản của thí nghiệm này, một nguồn sáng kết hợp, chẳng hạn như chùm tia laser, chiếu sáng qua hai khe hẹp song song trên một tấm và ánh sáng đi qua các khe được quan sát trên một màn hình đặt phía sau tấm.[6]:102–111[2]:1.1–1.8 Bản chất sóng của ánh sáng làm cho các sóng ánh sáng đi qua hai khe giao thoa, tạo ra các dải sáng và tối trên màn hình - sẽ không có kết quả này nếu ánh sáng có thành phần là các hạt cổ điển.[6] Tuy nhiên, trên màn chắn ánh sáng luôn bị hấp thụ tại các điểm rời rạc, dưới dạng các hạt riêng lẻ chứ không phải là sóng; hình ảnh giao thoa xuất hiện thông qua mật độ thay đổi của các hạt va chạm vào màn hình. Hơn nữa, nếu đặt các máy dò tại ngay sau các khe thì mỗi photon được phát hiện sẽ đi qua chỉ một khe (giống như một hạt cổ điển), và không đi qua cả hai khe (như một sóng).[6]:109[7][8] Tuy nhiên ở các thí nghiệm này cũng chứng tỏ, các hạt sẽ không hình thành vân giao thoa nếu máy dò thu được chúng đi qua khe hẹp nào. Đối với những thực thể ở cấp độ nguyên tử khác, như electron, cũng được tìm thấy có hành xử tương tự khi bắn các electron qua hai khe hẹp.[2] Đặc điểm này được gọi là lưỡng tính sóng hạt.

Một hiện tượng phản trực giác khác cũng được dự đoán bởi cơ học lượng tử đó là sự xuyên hầm lượng tử: một hạt có thể đi qua một hàng rào hố thế, ngay cả khi động năng của nó nhỏ hơn thế năng của hố.[9] Trong cơ học cổ điển hiện tượng này không thể xảy ra. Sự xuyên hầm lượng tử có một vài hệ quả quan trọng, như nó cho phép giải thích hiện tượng phân rã phóng xạ, phản ứng tổng hợp hạt nhân bên trong các sao, và các ứng dụng khác như kính hiển vi quét xuyên hầmdiode tunnel.[10]

Khi các hệ lượng tử tương tác, kết quả có thể dẫn đến hiệu ứng rối lượng tử: các thuộc tính của chúng trở nên gắn bó với nhau đến mức không còn có thể mô tả tổng thể theo từng phần riêng lẻ nữa. Erwin Schrödinger gọi sự vướng víu là "... đặc điểm đặc trưng của cơ học lượng tử, đặc điểm bắt buộc nó hoàn toàn tách khỏi các dòng tư tưởng cổ điển".[11] Vướng víu lượng tử cho phép các tính chất phản trực giác như trong lý thuyết trò chơi giả lượng tử (quantum pseudo-telepathy), và là một nguồn đặc điểm vô giá trong các giao thức truyền thông, như phân bố chìa khóa lượng tử trong lý thuyết thông tin lượng tử.[12] Trái ngược với quan niệm sai lầm phổ biến, hiệu ứng vướng víu lượng tử không cho phép gửi tín hiệu nhanh hơn ánh sáng, như được chứng minh bởi định lý không thể liên lạc (no-communication theorem).[12]

Một khả năng khác mở ra bởi sự vướng víu lượng tử đó là thực hiện kiểm nghiệm "lý thuyết các biến ẩn", các tính chất giả thuyết cơ bản hơn các đại lượng được miêu tả trong chính thuyết lượng tử, các hiểu biết về các biến ẩn cho phép các dự đoán chính xác hơn so với thuyết lượng tử có thể đưa ra. Tập hợp các kết quả, quan trọng nhất là định lý Bell, đã chứng minh rằng các lớp lý thuyết biến ẩn như vậy trên thực tế không tương thích với vật lý lượng tử. Theo định lý Bell, nếu tự nhiên thực sự hoạt động tuân theo một lý thuyết biến ẩn cục bộ nào, thì các kết quả của một thí nghiệm Bell sẽ bị ràng buộc theo một cách đặc biệt, định lượng được. Nhiều thí nghiệm Bell đã được thực hiện, sử dụng các hạt vướng víu, và chúng cho kết quả không tương thích với các ràng buộc áp đặt bởi các biến ẩn cục bộ.[13][14]

Không thể trình bày các khái niệm này một cách sâu sắc hơn mà không đưa ra giới thiệu các định nghĩa toán học liên quan; để hiểu cơ học lượng tử đòi hỏi không chỉ nắm được các phép toán trên các số phức, mà còn đại số tuyến tính, phương trình vi phân, lý thuyết nhóm, và các chủ đề toán học cao cấp khác.[note 2] Theo đó, bài viết này sẽ trình bày một khuôn khổ toán học của cơ học lượng tử và đưa ra các ứng dụng của nó ở một số ví dụ hữu ích và đã được nghiên cứu.

Khuôn khổ toán học

Trong khuôn khổ toán học chặt chẽ của cơ học lượng tử, trạng thái của một hệ cơ học lượng tử là một vectơ trong một không gian Hilbert phức (tách được) . Vectơ này được chuẩn hóa dưới phép toán tích vô hướng của không gian Hilbert, nghĩa là nó tuân theo , and it is well-defined up to a complex number of modulus 1 (the global phase), that is, and represent the same physical system. Nói cách khác, các trạng thái khả dĩ là các điểm trong không gian xạ ảnh của không gian Hilbert, thường gọi là không gian xạ ảnh phức. Bản chất chính xác của không gian Hilbert này phụ thuộc vào hệ – ví dụ, để miêu tả vị trí và xung lượng không gian Hilbert là không gian hàm phức bình phương khả tích (square-integrable function) , trong khi không gian Hilbert cho spin của một proton đơn lẻ chỉ đơn giản là không gian vectơ phức hai chiều được trang bị một tích vô hướng thông thường.

Các đại lượng vật lý quan tâm — vị trí, xung lượng, năng lượng, spin — được biểu diễn bằng các đại lượng quan sát được, gọi là các toán tử tuyến tính Hermit (chính xác hơn, toán tử tự liên hợp) tác dụng trên không gian Hilbert. Một trạng thái lượng tử là một vectơ riêng của một đại lượng quan sát được, trong trường hợp nó được gọi là trạng thái riêng, và giá trị riêng đi kèm tương ứng với giá trị của đại lượng quan sát được trong trạng thái riêng đó. Tổng quát hơn, một trạng thái lượng tử sẽ là tổ hợp tuyến tính của các trạng thái riêng, hay gọi là chồng chập lượng tử. Khi một đại lượng quan sát được được đo, kết quả đo sẽ là một trong các giá trị riêng của nó với xác suất cho bởi quy tắc Born: trong trường hợp đơn giản nhất giá trị riêng không suy biến và xác suất được cho bởi , với là vectơ riêng kết hợp của nó. Trong trường hợp tổng quát, giá trị riêng là suy biến và xác suất được cho bởi , với là toán tử hình chiếu trên không gian riêng tương ứng của nó. Trong trường hợp liên tục, các công thức này được thay thế bằng mật độ xác suất.

Sau khi thực hiện phép đo, nếu nhận được kết quả , thì trạng thái lượng tử được cho là suy sập thành trong trường hợp không suy biến, hoặc thành trong trường hợp tổng quát. Bản chất xác suất của cơ học lượng tử do vậy có nguồn gốc từ tác động của phép đo. Đây là một trong những khía cạnh khó hiểu nhất của cơ học lượng tử. Nó là chủ đề trung tâm trong cuộc tranh luận Bohr–Einstein nổi tiếng, khi hai nhà vật lý học cố gắng hiểu rõ những nguyên lý cơ bản này bằng các thí nghiệm tưởng tượng. Trong hàng thập kỷ kể từ khi hình thành cơ học lượng tử, câu hỏi về cái gì tạo lên một "phép đo" đã được nghiên cứu rộng rãi. Các giải thích mới về cơ học lượng tử đã được đưa ra theo cách khác so với quan điểm "suy sập hàm sóng" (ví dụ như cách giải thích đa thế giới). Ý tưởng cơ bản đó là khi một hệ lượng tử tương tác với một thiết bị đo, hàm sóng tương ứng của nó trở lên vướng víu do đó hệ lượng tử ban đầu mất đi sự tồn tại như là một thực thể độc lập. Về chi tiết, xem bài viết về phép đo trong cơ học lượng tử.[17]

Sự tiến triển theo thời gian của một hệ lượng tử được miêu bằng phương trình Schrödinger:

Ở đây toán tử Hamilton, đại lượng quan sát được tương ứng với tổng năng lượng của hệ, và hằng số Planck thu gọn. Hằng số được đưa ra sao cho toán tử Hamilton trong cơ học lượng tử trở thành toán tử Hamilton cổ điển trong trường hợp hệ lượng tử có thể xấp xỉ bằng một hệ cổ điển; với khả năng có thể thực hiện được những phép xấp xỉ như thế trong một số giới hạn nhất định được gọi là nguyên lý tương ứng.

Nghiệm của phương trình vi phân tuyến tính trên được cho bởi

Toán tử được gọi là toán tử tiến triển theo thời gian, và nó có một tính chất quan trọng đó là tính unita. Sự tiến triển thời gian này là tất định theo nghĩa – khi cho một trạng thái lượng tử ban đầu  – có thể dự đoán được cụ thể trạng thái lượng tử ở thời gian bất kỳ sau đó.[18]


Phương trình Schrodinger tác động lên toàn bộ biên độ xác suất chứ không chỉ ảnh hưởng đến giá trị tuyệt đối của nó. Nếu giá trị tuyệt đối của biên độ xác suất mang các thông tin về xác suất, thì pha của nó mang các thông tin về giao thoa giữa các trạng thái lượng tử. Điều này thể hiện tính chất sóng của trạng thái lượng tử.

Thực ra, nghiệm giải tích của phương trình Schrödinger chỉ có thể thu được từ một số rất ít các Hamilton như trường hợp của các dao động tử điều hòa lượng tửnguyên tử hydrogen là các đại diện quan trọng nhất. Thậm chí, ngay cả nguyên tử helium chỉ gồm hai điện tử mà cũng không thể giải bằng giải tích được. Chính vì thế mà người ta dùng một vài phép gần đúng để giải các bài toán phức tạp hơn một điện tử. Ví dụ như lý thuyết nhiễu loạn dùng nghiệm của các bài toán đối của các hệ lượng tử đơn giản sau đó thêm vào nghiệm đó một số hạng bổ chính do sự có mặt của một toán tử phụ, được coi như nhiễu loạn gây ra. Một phương pháp khác được gọi là phương trình chuyển động bán cổ điển được áp dụng cho các hệ vật lý mà cơ học cổ điển chỉ tạo ra một sai khác rất nhỏ so với cơ học cổ điển. Phương pháp này rất quan trọng trong hỗn loạn lượng tử.

Một phương pháp toán học thay thế cơ học lượng tử là công thức tích phân lộ trình Feynman, trong đó, biên độ cơ học lượng tử được coi là tổng theo tất cả các lịch sử giữa trạng thái đầu và cuối; nó tương đương với nguyên lý tác dụng tối thiểu trong cơ học cổ điển.

Mối liên hệ với các lý thuyết khoa học khác

Các nguyên tắc cơ bản của cơ học lượng tử rất khái quát. Chúng phát biểu rằng không gian trạng thái của hệ là không gian Hilbert và các quan sát là các toán tử Hermit tác dụng lên không gian đó. Nhưng chúng không nói với chúng ta là không gian Hilbert nào và toán tử nào. Chúng ta cần phải chọn các thông số đó cho phù hợp để mô tả định lượng hệ lượng tử. Một hướng dẫn quan trọng cho việc lựa chọn này đó là nguyên lý tương ứng, nguyên lý này phát biểu rằng các dự đoán của cơ học lượng tử sẽ được rút gọn về các dự đoán của cơ học cổ điển khi hệ trở nên lớn. Giới hạn hệ lớn được gọi là "cổ điển" hay "giới hạn tương ứng". Do đó, ta có thể bắt đầu bằng một mô hình cổ điển với một hệ nào đó và cố gắng tiên đoán một mô hình lượng tử mà trong giới hạn tương ứng, mô hình lượng tử đó sẽ rút về mô hình cổ điển.

Ban đầu, khi thiết lập cơ học cổ điển, nó được áp dụng cho các mô hình mà giới hạn tương ứng là cơ học cổ điển phi tương đối tính. Ví dụ mô hình dao động tử điều hòa lượng tử sử dụng biểu thức phi tương đối tính tường minh cho động năng của dao động tử, và nó là phiên bản lượng tử của dao động tử điều hòa cổ điển.

Các cố gắng ban đầu để kết hợp cơ học lượng tử với lý thuyết tương đối hẹp là thay thế phương trình Schrödinger bằng một phương trình hiệp biến như là phương trình Klein-Gordon hoặc là phương trình Dirac. Khi các lý thuyết này thành công trong việc giải thích các kết quả thực nghiệm thì chúng lại có vẻ như bỏ qua quá trình sinh và hủy tương đối tính của các hạt. Lý thuyết lượng tử tương đối tính đầy đủ phải cần đến lý thuyết trường lượng tử. Lý thuyết này áp dụng lượng tử hóa cho trường chứ không chỉ cho một tập hợp cố định gồm các hạt (được gọi là lượng tử hóa lần thứ hai để so sánh với lượng tử hóa lần thứ nhất là lượng tử hóa dành cho các hạt). Lý thuyết trường lượng tử hoàn thành đầu tiên là điện động lực học lượng tử, nó mô tả đầy đủ tương tác điện từ.

Ít khi người ta phải dùng toàn bộ lý thuyết trường lượng tử để mô tả các hệ điện từ. Một phương pháp đơn giản hơn được người ta áp dụng từ khi khởi đầu của cơ học lượng tử, đó là coi các hạt tích điện như là các thực thể cơ học lượng tử chỉ bị tác dụng bởi trường điện từ cổ điển. Ví dụ, mô hình lượng tử cơ bản về nguyên tử hydrogen mô tả điện trường của nguyên tử hydrogen sử dụng thế năng Coulomb 1/r cổ điển. Phương pháp "bán cổ điển" này bị vô hiệu hóa khi thăng giáng lượng tử trong trường điện tử đóng vai trò quan trọng như là sự phát xạ quang tử từ các hạt tích điện.

Lý thuyết trường lượng tử cho lực tương tác mạnhlực tương tác yếu đã được phát triển và gọi là sắc động lực học lượng tử. Lý thuyết mô tả tương tác của các hạt hạ hạt nhân như là các quarkgluon. Lực tương tác yếu và lực điện từ đã được thống nhất và lý thuyết lượng tử mô tả hai lực đó được gọi là lý thuyết điện-yếu.

Rất khó có thể xây dựng các mô hình lượng tử về hấp dẫn, lực cơ bản còn lại duy nhất mà chưa được thống nhất với các lực còn lại. Các phép gần đúng bán cổ điển có thể được sử dụng và dẫn đến tiên đoán về bức xạ Hawking. Tuy nhiên, công thức của một lý thuyết hấp dẫn lượng tử hoàn thiện lại bị cản trở bởi sự không tương thích giữa lý thuyết tương đối rộng (lý thuyết về hấp dẫn chính xác nhất hiện nay) với một số giả thuyết cơ bản của lý thuyết lượng tử (như vướng víu lượng tử, nguyên lý bất định...). Việc giải quyết sự không tương thích này là một nhánh của vật lý mà đang được nghiên cứu rất sôi nổi hiện nay. Một số lý thuyết như lý thuyết dây là một trong những ứng cử viên khả dĩ cho lý thuyết hấp dẫn lượng tử của tương lai.

Ứng dụng của cơ học lượng tử

Cơ học lượng tử đã đạt được các thành công vang dội trong việc giải thích rất nhiều các đặc điểm của thế giới chúng ta. Tất cả các tính chất riêng biệt của các hạt vi mô tạo nên tất cả các dạng vật chất đó là điện tử, proton, neutron,... chỉ có thể được mô tả bằng cơ học lượng tử.

Cơ học lượng tử còn quan trọng trong việc tìm hiểu các nguyên tử riêng biệt kết hợp với nhau để tạo nên các chất như thế nào. Việc áp dụng cơ học lượng tử vào hóa học được gọi là hóa học lượng tử. Cơ học lượng tử có thể cho phép nhìn sâu vào các quá trình liên kết hóa học bằng việc cho biết các phân tử ở các trạng thái có lợi về năng lượng như thế nào so với các trạng thái và làm sao mà chúng khác nhau. Phần lớn các tính toán được thực hiện trong hóa học tính toán dựa trên cơ học lượng tử.

Rất nhiều các công nghệ hiện đại sử dụng các thiết bị có kích thước mà ở đó hiệu ứng lượng tử rất quan trọng. Ví dụ như là laser, transistor, hiển vi điện tử, và chụp cộng hưởng từ hạt nhân. Nghiên cứu về chất bán dẫn dẫn đến việc phát minh ra các đi-ốttransistor, đó là những linh kiện điện tử không thể thiếu trong xã hội hiện đại.

Các nhà nghiên cứu hiện đang tìm kiếm các phương pháp để can thiệp vào các trạng thái lượng tử. Một trong những cố gắng đó là mật mã lượng tử cho phép truyền thông tin một cách an toàn[19]. Mục đích xa hơn là phát triển các máy tính lượng tử, có thể thực hiện các tính toán nhanh hơn các máy tính hiện nay rất nhiều lần. Một lĩnh vực khác đó là viễn tải lượng tử có thể cho phép truyền các trạng thái lượng tử đến những khoảng cách bất kỳ.

Hệ quả triết học của cơ học lượng tử

Ngay từ đầu, các kết quả ngược với cảm nhận con người bình thường của cơ học lượng tử đã gây ra rất nhiều các cuộc tranh luận triết học và nhiều cách giải thích khác nhau về cơ học lượng tử. Ngay cả các vấn đề cơ bản như là các quy tắc Max Born liên quan đến biên độ xác suấtphân bố xác suất cũng phải mất đến hàng thập kỷ mới được thừa nhận.

Giải thích Copenhagen, chủ yếu là do Niels Bohr đưa ra, là cách giải thích mẫu mực về cơ học lượng tử từ khi lý thuyết này được đưa ra lần đầu tiên. Theo cách giải thích của trường phái này thì bản chất xác suất của các tiên đoán của cơ học lượng tử không thể được giải thích dựa trên một số lý thuyết tất định, và không chỉ đơn giản phản ánh kiến thức hữu hạn của chúng ta. Cơ học lượng tử cho các kết quả có tính xác suất vì vũ trụ mà chúng ta đang thấy mang tính xác suất chứ không phải là mang tính tất định.

Bản thân Albert Einstein, một trong những người sáng lập lý thuyết lượng tử, cũng không thích tính bất định trong các phép đo vật lý. Ông bảo vệ ý tưởng cho rằng có một lý thuyết biến số ẩn cục bộ nằm đằng sau cơ học lượng tử và hệ quả là lý thuyết hiện tại chưa phải là hoàn thiện. Ông đưa ra nhiều phản đề đối với lý thuyết lượng tử, trong số đó thì nghịch lý EPR (nghịch lý do Albert Einstein, Boris Podolsky, và Nathan Rosen đưa ra) là nổi tiếng nhất. John Bell cho rằng nghịch lý EPR dẫn đến các sự sai khác có thể được kiểm nghiệm bằng thực nghiệm giữa cơ học lượng tử và lý thuyết biến số ẩn cục bộ. Thí nghiệm đã được tiến hành và khẳng định cơ học lượng tử là đúng và thế giới thực tại không thể được mô tả bằng các biến số ẩn. Tuy nhiên, việc tồn tại các kẽ hở Bell trong các thí nghiệm này có nghĩa là câu hỏi vẫn chưa được giải đáp thỏa đáng.

Xem thêm: tranh luận Bohr-Einstein

Cách giải thích đa thế giới của Hugh Everett được đưa ra vào năm 1956 cho rằng tất cả các xác suất mô tả bởi cơ học lượng tử xuất hiện trong rất nhiều thế giới khác nhau, cùng tồn tại song song và độc lập với nhau. Trong khi đa thế giới là tất định thì chúng ta nhận được các tính chất bất định cho bởi các xác suất bởi vì chúng ta chỉ quan sát được thế giới mà chúng ta tồn tại mà thôi.

Giải thích Bohm, do David Bohm đưa ra, đã thừa nhận sự tồn tại của các hàm sóng phổ quát, phi cục bộ. Hàm sóng này cho phép các hạt ở xa nhau có thể tương tác tức thời với nhau. Dựa trên cách giải thích này Bohm lý luận rằng bản chất sâu xa nhất của thực tại vật lý không phải là tập hợp các vật thể rời rạc như chúng ta thấy mà là một thực thể thống nhất năng động, không thể phân chia, và bất diệt. Tuy nhiên cách giải thích của Bohm không được phổ biến trong giới vật lý vì nó được coi là không tinh tế.

Lịch sử cơ học lượng tử

Hình 2: Max Planck, cha đẻ của lý thuyết lượng tử.

Bài chính: Giải Nobel về vật lý

Năm 1900, Max Planck đưa ra ý tưởng là năng lượng phát xạ bị lượng tử hóa để giải thích về sự phụ thuộc của năng lượng phát xạ vào tần số của một vật đen. Năm 1905, Einstein giải thích hiệu ứng quang điện dựa trên ý tưởng lượng tử của Plank nhưng ông cho rằng năng lượng không chỉ phát xạ mà còn hấp thụ theo những lượng tử mà ông gọi là quang tử. Năm 1913, Bohr giải thích quang phổ vạch của nguyên tử hydrogen lại bằng giả thuyết lượng tử. Năm 1924 Louis de Broglie đưa ra lý thuyết của ông về sóng vật chất.

Các lý thuyết trên, mặc dù thành công trong giải thích một số thí nghiệm nhưng vẫn bị giới hạn ở tính hiện tượng luận: chúng không được chứng minh một cách chặt chẽ về tính lượng tử. Tất cả các lý thuyết đó được gọi là lý thuyết lượng tử cổ điển.

Thuật ngữ "vật lý lượng tử" lần đầu tiên được dùng trong bài Planck's Universe in Light of Modern Physics của Johnston (Vũ trụ của Planck dưới ánh sáng của vật lý hiện đại).

Cơ học lượng tử hiện đại được ra đời năm 1925, khi Heisenberg phát triển cơ học ma trậnSchrödinger sáng tạo ra cơ học sóngphương trình Schrödinger. Sau đó, Schrödinger chứng minh rằng hai cách tiếp cận trên là tương đương.

Heisenberg đưa ra nguyên lý bất định vào năm 1927giải thích Copenhagen cũng hình thành vào cùng thời gian đó. Bắt đầu vào năm 1927, Paul Dirac thống nhất lý thuyết tương đối hẹp với cơ học lượng tử. Ông cũng là người tiên phong sử dụng lý thuyết toán tử, trong đó có ký hiệu Bra-ket rất hiệu quả trong các tính toán như được mô tả trong cuốn sách nổi tiếng của ông xuất bản năm 1930. Cũng vào khoảng thời gian này John von Neumann đã đưa ra cơ sở toán học chặt chẽ cho cơ học lượng tử như là một lý thuyết về các toán tử tuyến tính trong không gian Hilbert. Nó được trình bày trong cuốn sách cũng nổi tiếng của ông xuất bản năm 1932. Các lý thuyết này cùng với các nghiên cứu khác từ thời kỳ hình thành cho đến nay vẫn đứng vững và ngày càng được sử dụng rộng rãi.

Lĩnh vực hóa học lượng tử được phát triển của những người tiên phong là Walter HeitlerFritz London. Họ đã công bố các nghiên cứu về liên kết hóa trị của phân tử hydrogen vào năm 1927. Sau đó, hóa học lượng tử được phát triển rất mạnh trong đó có Linus Pauling.

Đầu năm 1927, các cố gắng nhằm áp dụng cơ học lượng tử vào các lĩnh vực khác như là các hạt đơn lẻ dẫn đến sự ra đời của lý thuyết trường lượng tử. Những người đi đầu trong lĩnh vực này là Paul Dirac, Wolfgang Pauli, Victor WeisskopfPascaul Jordan. Lĩnh vực này cực thịnh trong lý thuyết điện động lực học lượng tử do Richard Feynman, Freeman Dyson, Julian SchwingerSin-Itiro Tomonaga phát triển cvào những năm 1940. Điện động lực học lượng tử là lý thuyết lượng tử về điện tử, phản điện tửđiện từ trường và đóng vai trò quan trọng trong các lý thuyết trường lượng tử sau này.

Hugh Everett đưa ra giải thích đa thế giới vào năm 1956.

Lý thuyết sắc động lực học lượng tử được hình thành vào đầu những năm 1960. Lý thuyết này do Politzer, GrossWilzcek đưa ra vào năm 1975. Dựa trên các công trình tiên phong của Schwinger, Peter Higgs, Goldstone và những người khác, Sheldon Lee Glashow, Steven WeinbergAbdus Salam đã độc lập với nhau chứng minh rằng lực tương tác yếu và sắc động lực học lượng tử có thể kết hợp thành một lực điện-yếu duy nhất.

Các thí nghiệm quan trọng

Khái niệm lượng tử

Lượng tử không có khối lượng cho biết số lượng vật chất trong một năng lượng quang tuyến sóng điện từ di chuyển ở vận tốc ánh sáng thấy được

Các công thức trên có thể viết dưới dạng sau

Xem thêm

Tham khảo

  1. ^ Born, M. (1926). “Zur Quantenmechanik der Stoßvorgänge” [On the Quantum Mechanics of Collision Processes]. Zeitschrift für Physik. 37 (12): 863–867. Bibcode:1926ZPhy...37..863B. doi:10.1007/BF01397477. S2CID 119896026.
  2. ^ a b c Feynman, Richard; Leighton, Robert; Sands, Matthew (1964). The Feynman Lectures on Physics. 3. California Institute of Technology. ISBN 978-0201500646. Truy cập ngày 19 tháng 12 năm 2020.
  3. ^ Jaeger, Gregg (tháng 9 năm 2014). “What in the (quantum) world is macroscopic?”. American Journal of Physics. 82 (9): 896–905. Bibcode:2014AmJPh..82..896J. doi:10.1119/1.4878358.
  4. ^ Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (tháng 9 năm 2019). “Quantum superposition of molecules beyond 25 kDa”. Nature Physics. 15 (12): 1242–1245. Bibcode:2019NatPh..15.1242F. doi:10.1038/s41567-019-0663-9. S2CID 203638258.
  5. ^ Bojowald, Martin (2015). “Quantum cosmology: a review”. Reports on Progress in Physics. 78: 023901. arXiv:1501.04899. doi:10.1088/0034-4885/78/2/023901.
  6. ^ a b c Lederman, Leon M.; Hill, Christopher T. (2011). Quantum Physics for Poets. US: Prometheus Books. ISBN 978-1616142810.
  7. ^ Müller-Kirsten, H. J. W. (2006). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. US: World Scientific. tr. 14. ISBN 978-981-2566911.
  8. ^ Plotnitsky, Arkady (2012). Niels Bohr and Complementarity: An Introduction. US: Springer. tr. 75–76. ISBN 978-1461445173.
  9. ^ Griffiths, David J. (1995). Introduction to Quantum Mechanics. Prentice Hall. ISBN 0-13-124405-1.
  10. ^ Trixler, F. (2013). “Quantum tunnelling to the origin and evolution of life”. Current Organic Chemistry. 17 (16): 1758–1770. doi:10.2174/13852728113179990083. PMC 3768233. PMID 24039543.
  11. ^ Bub, Jeffrey (2019). “Quantum entanglement”. Trong Zalta, Edward N. (biên tập). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
  12. ^ a b Caves, Carlton M. (2015). “Quantum Information Science: Emerging No More”. Trong Kelley, Paul; Agrawal, Govind; Bass, Mike; Hecht, Jeff; Stroud, Carlos (biên tập). OSA Century of Optics. The Optical Society. tr. 320–323. arXiv:1302.1864. Bibcode:2013arXiv1302.1864C. ISBN 978-1-943580-04-0.
  13. ^ Wiseman, Howard (tháng 10 năm 2015). “Death by experiment for local realism”. Nature (bằng tiếng Anh). 526 (7575): 649–650. doi:10.1038/nature15631. ISSN 0028-0836.
  14. ^ Wolchover, Natalie (7 tháng 2 năm 2017). “Experiment Reaffirms Quantum Weirdness”. Quanta Magazine (bằng tiếng Anh). Truy cập ngày 8 tháng 2 năm 2020.
  15. ^ Baez, John C. (20 tháng 3 năm 2020). “How to Learn Math and Physics”. University of California, Riverside. Truy cập ngày 19 tháng 12 năm 2020.
  16. ^ Sagan, Carl (1996). The Demon-Haunted World: Science as a Candle in the Dark. Ballentine Books. tr. 249. ISBN 0-345-40946-9.
  17. ^ Greenstein, George; Zajonc, Arthur (2006). The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (ấn bản 2). Jones and Bartlett Publishers, Inc. tr. 215. ISBN 978-0-7637-2470-2., Chapter 8, p. 215
  18. ^ Weinberg, Steven (2010). Dreams Of A Final Theory: The Search for The Fundamental Laws of Nature. Random House. tr. 82. ISBN 978-1-4070-6396-6.
  19. ^ Tham khảo mật mã lượng tử: https://www.youtube.com/watch?v=UiJiXNEm-Go https://www.youtube.com/watch?v=6H_9l9N3IXU&t=

Liên kết ngoài

(tiếng Việt)

(tiếng Anh)


Lỗi chú thích: Đã tìm thấy thẻ <ref> với tên nhóm “note”, nhưng không tìm thấy thẻ tương ứng <references group="note"/> tương ứng, hoặc thẻ đóng </ref> bị thiếu