Định lý Menelaus

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Định lý Menelaus

Định lý Menelaus là một định lý cơ bản trong hình học tam giác, được phát biểu như sau: Cho tam giác ABC. Các điểm D, E, F lần lượt nằm trên các đường thẳng BC, CA, AB. Khi đó D, E, F thẳng hàng khi và chỉ khi

Chứng minh[sửa | sửa mã nguồn]

*Phần thuận: Giả sử D, E, F thẳng hàng với nhau. Vẽ đường thẳng qua C và song song với AB cắt đường thẳng DE tại G.
Vì CG//AB (c.dựng) nên theo định lý Ta-lét, ta có:
(1) và (2)
Nhân (1) và (2) vế theo vế

Từ đó suy ra

*Phần đảo: Giả sử . Khi đó gọi F' là giao của đường thẳng ED với đường thẳng AB.
Theo chứng minh ở trên, ta có
Kết hợp giả thuyết suy ra
Hay
Nên F'A = FA và F'B = FB
Do đó F' trùng với F.
Vậy định lý đã được chứng minh.

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]

  • Coxeter, H. S. M. and Greitzer, S. L. "Menelaus's Theorem." §3.4 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 66–67, 1967.
  • Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 122, 1987.
  • Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, p. 81, 1930.
  • Grünbaum, B. and Shepard, G. C. "Ceva, Menelaus, and the Area Principle." Math. Mag. 68, 254-268, 1995.
  • Honsberger, R. "The Theorem of Menelaus." Ch. 13 in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 147–154, 1995.
  • Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, pp. 42–44, 1928.
  • Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, p. 81, 1930.
  • Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 150, 1991.