Định lý Pascal

Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướng Bước tới tìm kiếm
Đường thẳng Pascal GHK của lục giác nội tiếp một Elip ABCDEF. Các cạnh đối diện của một hình lục giác có cùng màu sắc.

Định lý Pascal (còn được biết đến với tên định lý lục giác huyền bí) là một định lý trong hình học phẳng đặt theo tên nhà toán học người PhápBlaise Pascal. Nội dung định lý khẳng định rằng cho sáu điểm bất kỳ trên một conic (ví dụ elip, parabol hoặc hyperbol) khi đó giao điểm của các cặp cạnh đối diện thẳng hàng. Đường thẳng này gọi là đường thẳng Pascal.

Chứng minh[sửa | sửa mã nguồn]

Kết quả liên quan[sửa | sửa mã nguồn]

  • Định lý Kirman: Đường thẳng Pascal của các lục giác , và đồng quy. Điểm đồng quy này gọi là điểm Kirman, tổng cộng có 60 điểm Kirman, trong đó có 3 điểm Kirman và một điểm Steiner nằm trên một đường thẳng, đường thẳng này gọi là đường thẳng Cayley [1][2][3]
  • Định lý Steiner: Đường thẳng Pascal của các lục giác , và đồng quy. Điểm đồng quy này gọi là điểm Steiner, tổng cộng có 20 điểm Steiner, trong đó có 1 điểm Steiner và ba điểm Kirman nằm trên một đường thẳng, đường thẳng này gọi là đường thẳng Caley [1][4][5]
  • Điểm Salmon: Tổng cộng có 20 đường thẳng Caley, bốn đường thẳng Caley sẽ đồng quy tại một điểm gọi là điểm Salmon. Mỗi một điểm Salmon lại đối ngẫu với một đường thẳng gọi là đường thẳng Plücker.[6]

Mở rộng và suy biến[sửa | sửa mã nguồn]

Mở rộng[sửa | sửa mã nguồn]

Suy biến[sửa | sửa mã nguồn]

Các trường hợp suy biến của định lý Pascal
  • Định lý Pappus: rường hợp đường conic suy biến thành hai đường thằng thì định lý Pascal trở thành định lý Pappus.
  • Trường hợp lục giác suy biến thành ngũ giác: Cho ngũ giác nội tiếp một đường conic, là giao điểm của tiếp tuyến của đường conic tại giao và đường thẳng , là giao điểm của đường thẳng AB giao với đường thẳng là giao điểm của đường thẳng và đường thẳng . Thì thẳng hàng.
  • Trường hợp lục giác suy biến thành tứ giác: Cho tứ giác nằm trên một đường conic, M là giao điểm của tiếp tuyến của đường conic tại và tiếp tuyến đường conic tại . là giao điểm của là giao điểm của , thì thẳng hàng.
  • Trường hợp lục giác suy biến thành tam giác: Cho tam giác ABC tiếp tuyến của đường tròn ngoại tiếp tam giác tại cắt các cạnh lần lượt tại khi đó thẳng hàng.

Tính chất của lục giác và đường thẳng Pascal[sửa | sửa mã nguồn]

  • Cho lục giác , gọi , , như hình vẽ đầu tiên. Khi đó sáu đỉnh của lục giác nội tiếp một đường conic nếu và chỉ nếu thẳng hàng. Hai điều kiện đó tương đương với một hệ thức sau đây:[8]

Xem thêm[sửa | sửa mã nguồn]

Chú thích[sửa | sửa mã nguồn]

  1. ^ a ă Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, pp. 236-237, 1929.
  2. ^ Cremona, L. "Osservazioni sull'hexagrammum mysticum." Transunti della R. Acc. Nazionale dei Lincei 1, 142-143, 1876-77.
  3. ^ ohnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, pp. 236-237, 1929.
  4. ^ Steiner, J. "Questions proposées. Théorèmes sur l'hexagramum mysticum." Ann. Math. 18, 339-340, 1827-1828.
  5. ^ Salmon, G. "Notes: Pascal's Theorem, Art. 267" in A Treatise on Conic Sections, 6th ed. New York: Chelsea, pp. 379-382, 1960.
  6. ^ http://mathworld.wolfram.com/SalmonPoints.html
  7. ^ A. Cayley, On the Intersection of Curves (published by Cambridge University Press, Cambridge, 1889).
  8. ^ “A Property of Pascal's Hexagon Pascal May Have Overlooked”. Ngày 3 tháng 2 năm 2014. 

Tham khảo[sửa | sửa mã nguồn]

Liên kết ngoài[sửa | sửa mã nguồn]