Bản mẫu:Dược động học amphetamin

Bách khoa toàn thư mở Wikipedia
Chuyển hóa amphetamin ở người[cụm nguồn 1]
Graphic of several routes of amphetamine metabolism




Para-hydroxyl
hóa
Para-hydroxyl
hóa
Para-hydroxyl
hóa
không xác định
enzym


Beta-hydroxyl
hóa
Beta-hydroxyl
hóa


Deamin oxi hóa


Oxi hóa
Không xác định
enzym
Liên hợp glycin
The image above contains clickable links
The image above contains clickable links
Example caption (this text isn't transcluded). 
Tài liệu bản mẫu

To transclude this template, use: {{Amphetamine pharmacokinetics | caption=(desired caption) | align=(left/right/center)}}

This image's alternative text (i.e. the |alt= parameter from Template:Annotated image 4) is set as "Graphic of several routes of amphetamine metabolism".


 If this template is added to an article, the following two lines of code must be included in the article's references section to avoid reference error messages:

  1. {{reflist|group=note}}
  2. {{reflist|group=sources}}


If you have questions about this template or how to use it in articles, feel free to ask on this template's talk page or at User talk:Seppi333.


Notes and references that are transcluded with this template

Notes

Grouped references

References

  1. ^ “Adderall XR Prescribing Information” (PDF). United States Food and Drug Administration. Shire US Inc. tháng 12 năm 2013. tr. 12–13. Truy cập ngày 30 tháng 12 năm 2013.
  2. ^ a b Glennon RA (2013). “Phenylisopropylamine stimulants: amphetamine-related agents”. Trong Lemke TL, Williams DA, Roche VF, Zito W (biên tập). Foye's principles of medicinal chemistry (ấn bản 7). Philadelphia, USA: Wolters Kluwer Health/Lippincott Williams & Wilkins. tr. 646–648. ISBN 9781609133450. The simplest unsubstituted phenylisopropylamine, 1-phenyl-2-aminopropane, or amphetamine, serves as a common structural template for hallucinogens and psychostimulants. Amphetamine produces central stimulant, anorectic, and sympathomimetic actions, and it is the prototype member of this class (39). ... The phase 1 metabolism of amphetamine analogs is catalyzed by two systems: cytochrome P450 and flavin monooxygenase. ... Amphetamine can also undergo aromatic hydroxylation to p-hydroxyamphetamine. ... Subsequent oxidation at the benzylic position by DA β-hydroxylase affords p-hydroxynorephedrine. Alternatively, direct oxidation of amphetamine by DA β-hydroxylase can afford norephedrine.
  3. ^ Taylor KB (tháng 1 năm 1974). “Dopamine-beta-hydroxylase. Stereochemical course of the reaction” (PDF). Journal of Biological Chemistry. 249 (2): 454–458. PMID 4809526. Truy cập ngày 6 tháng 11 năm 2014. Dopamine-β-hydroxylase catalyzed the removal of the pro-R hydrogen atom and the production of 1-norephedrine, (2S,1R)-2-amino-1-hydroxyl-1-phenylpropane, from d-amphetamine.
  4. ^ Krueger SK, Williams DE (tháng 6 năm 2005). “Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism”. Pharmacology & Therapeutics. 106 (3): 357–387. doi:10.1016/j.pharmthera.2005.01.001. PMC 1828602. PMID 15922018.
    Table 5: N-containing drugs and xenobiotics oxygenated by FMO
  5. ^ Cashman JR, Xiong YN, Xu L, Janowsky A (tháng 3 năm 1999). “N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication”. Journal of Pharmacology and Experimental Therapeutics. 288 (3): 1251–1260. PMID 10027866.
  6. ^ Santagati NA, Ferrara G, Marrazzo A, Ronsisvalle G (tháng 9 năm 2002). “Simultaneous determination of amphetamine and one of its metabolites by HPLC with electrochemical detection”. Journal of Pharmaceutical and Biomedical Analysis. 30 (2): 247–255. doi:10.1016/S0731-7085(02)00330-8. PMID 12191709.
  7. ^ a b c Sjoerdsma A, von Studnitz W (tháng 4 năm 1963). “Dopamine-beta-oxidase activity in man, using hydroxyamphetamine as substrate”. British Journal of Pharmacology and Chemotherapy. 20: 278–284. doi:10.1111/j.1476-5381.1963.tb01467.x. PMC 1703637. PMID 13977820. Hydroxyamphetamine was administered orally to five human subjects ... Since conversion of hydroxyamphetamine to hydroxynorephedrine occurs in vitro by the action of dopamine-β-oxidase, a simple method is suggested for measuring the activity of this enzyme and the effect of its inhibitors in man. ... The lack of effect of administration of neomycin to one patient indicates that the hydroxylation occurs in body tissues. ... a major portion of the β-hydroxylation of hydroxyamphetamine occurs in non-adrenal tissue. Unfortunately, at the present time one cannot be completely certain that the hydroxylation of hydroxyamphetamine in vivo is accomplished by the same enzyme which converts dopamine to noradrenaline.
  8. ^ Badenhorst CP, van der Sluis R, Erasmus E, van Dijk AA (tháng 9 năm 2013). “Glycine conjugation: importance in metabolism, the role of glycine N-acyltransferase, and factors that influence interindividual variation”. Expert Opinion on Drug Metabolism & Toxicology. 9 (9): 1139–1153. doi:10.1517/17425255.2013.796929. PMID 23650932. Figure 1. Glycine conjugation of benzoic acid. The glycine conjugation pathway consists of two steps. First benzoate is ligated to CoASH to form the high-energy benzoyl-CoA thioester. This reaction is catalyzed by the HXM-A and HXM-B medium-chain acid:CoA ligases and requires energy in the form of ATP. ... The benzoyl-CoA is then conjugated to glycine by GLYAT to form hippuric acid, releasing CoASH. In addition to the factors listed in the boxes, the levels of ATP, CoASH, and glycine may influence the overall rate of the glycine conjugation pathway.
  9. ^ Horwitz D, Alexander RW, Lovenberg W, Keiser HR (tháng 5 năm 1973). “Human serum dopamine-β-hydroxylase. Relationship to hypertension and sympathetic activity”. Circulation Research. 32 (5): 594–599. doi:10.1161/01.RES.32.5.594. PMID 4713201. The biologic significance of the different levels of serum DβH activity was studied in two ways. First, in vivo ability to β-hydroxylate the synthetic substrate hydroxyamphetamine was compared in two subjects with low serum DβH activity and two subjects with average activity. ... In one study, hydroxyamphetamine (Paredrine), a synthetic substrate for DβH, was administered to subjects with either low or average levels of serum DβH activity. The percent of the drug hydroxylated to hydroxynorephedrine was comparable in all subjects (6.5-9.62) (Table 3).
  10. ^ Freeman JJ, Sulser F (tháng 12 năm 1974). “Formation of p-hydroxynorephedrine in brain following intraventricular administration of p-hydroxyamphetamine”. Neuropharmacology. 13 (12): 1187–1190. doi:10.1016/0028-3908(74)90069-0. PMID 4457764. In species where aromatic hydroxylation of amphetamine is the major metabolic pathway, p-hydroxyamphetamine (POH) and p-hydroxynorephedrine (PHN) may contribute to the pharmacological profile of the parent drug. ... The location of the p-hydroxylation and β-hydroxylation reactions is important in species where aromatic hydroxylation of amphetamine is the predominant pathway of metabolism. Following systemic administration of amphetamine to rats, POH has been found in urine and in plasma.
    The observed lack of a significant accumulation of PHN in brain following the intraventricular administration of (+)-amphetamine and the formation of appreciable amounts of PHN from (+)-POH in brain tissue in vivo supports the view that the aromatic hydroxylation of amphetamine following its systemic administration occurs predominantly in the periphery, and that POH is then transported through the blood-brain barrier, taken up by noradrenergic neurones in brain where (+)-POH is converted in the storage vesicles by dopamine β-hydroxylase to PHN.
  11. ^ Matsuda LA, Hanson GR, Gibb JW (tháng 12 năm 1989). “Neurochemical effects of amphetamine metabolites on central dopaminergic and serotonergic systems”. Journal of Pharmacology and Experimental Therapeutics. 251 (3): 901–908. PMID 2600821. The metabolism of p-OHA to p-OHNor is well documented and dopamine-β hydroxylase present in noradrenergic neurons could easily convert p-OHA to p-OHNor after intraventricular administration.


Lỗi chú thích: Đã tìm thấy thẻ <ref> với tên nhóm “cụm nguồn”, nhưng không tìm thấy thẻ tương ứng <references group="cụm nguồn"/> tương ứng, hoặc thẻ đóng </ref> bị thiếu
Lỗi chú thích: Đã tìm thấy thẻ <ref> với tên nhóm “chú thích”, nhưng không tìm thấy thẻ tương ứng <references group="chú thích"/> tương ứng, hoặc thẻ đóng </ref> bị thiếu