Phương trình đại số

Bách khoa toàn thư mở Wikipedia
(đổi hướng từ Các phương trình đại số)
Buớc tưới chuyển hướng Bước tới tìm kiếm

Một phương trình đại số với n biến số là một phương trình có dạng:

f(x1, x2,..., xn) = 0

trong đó f(x1,x2,...,xn) là một đa thức của n ẩn x1, x2,..., xn.

với là các hệ số thực (hoặc phức), các số mũ ei là các số nguyên không âm và tổng trên là hữu hạn.

Bậc của phương trình đại số[sửa | sửa mã nguồn]

Tổng các số mũ của các ẩn e1+e2+...+en của mỗi số hạng, được gọi là bậc của số hạng đó. Bậc lớn nhất của mỗi số hạng được gọi là bậc của phương trình.

Nghiệm của các phương trình đại số một ẩn với hệ số nguyên được gọi là số đại số. Số đại số phân biệt với số siêu việt (số không phải là nghiệm của một phương trình đại số).

Niels Henrik AbelÉvariste Galois đã chứng minh được rằng không có phương pháp đại số tổng quát nào để giải phương trình đại số với bậc lớn hơn bốn

Nghiệm phương trình đại số[sửa | sửa mã nguồn]

Các số x thỏa mản f(x) = 0 được gọi là nghiệm của phương trình. Quá trình tìm nghiệm của phương trình được gọi là giải phương trình. Thí du cho phương trình

Chia 2 vế cho 2

Từ trên, ta thấy là nghiệm của phương trình vì thế giá trị của x vào phương trình ta được

Các chủ đề liên quan[sửa | sửa mã nguồn]

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]