Cân bằng hóa học

Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướng Bước tới tìm kiếm

Trong phản ứng hóa học, cân bằng hóa học là trạng thái mà cả chất phản ứng và sản phẩm đều có nồng độ không có xu hướng thay đổi theo thời gian, do đó không có sự thay đổi có thể quan sát được về tính chất của hệ thống.[1] Thông thường, trạng thái này có kết quả khi phản ứng thuận tiến hành với tốc độ tương tự như phản ứng nghịch. Tốc độ phản ứng của các phản ứng thuận và nghịch thường không bằng không, nhưng bằng nhau. Do đó, không có thay đổi nào về nồng độ của chất phản ứng và (các) sản phẩm phản ứng. Trạng thái như vậy được gọi là trạng thái cân bằng động.[2][3]

Lịch sử[sửa | sửa mã nguồn]

Khái niệm cân bằng hóa học được phát triển sau khi Berthollet (1803) phát hiện ra rằng một số phản ứng hóa học có thể đảo ngược.[4] Đối với bất kỳ hỗn hợp phản ứng nào tồn tại ở trạng thái cân bằng, tốc độ của các phản ứng thuận và nghịch (ngược) là bằng nhau. Trong những điều sau đây phương trình hóa học với mũi tên chỉ cả hai cách để chỉ ra trạng thái cân bằng,[5] A và B là chất phản ứng, S và T là sản phẩm, và α, β, στ là hệ số cân bằng hóa học của các chất phản ứng tương ứng và các sản phẩm:

α   A + β   B cân bằng với   S + τ   T

Vị trí nồng độ cân bằng của một phản ứng được cho là nằm "ở bên phải" nếu, ở trạng thái cân bằng, gần như tất cả các chất phản ứng được dùng hết. Ngược lại, vị trí cân bằng được gọi là "ở bên trái" nếu hầu như không có sản phẩm nào được hình thành từ các chất phản ứng.

Guldberg và Waage (1865), dựa trên ý tưởng của Berthollet, đã đề xuất định luật phản ứng khối lượng

trong đó A, B, S và T là các khối lượng hoạt động và k +k - là các hằng số tốc độ. Vì ở trạng thái cân bằng tốc độ thuận và nghịch đều bằng nhau:

và tỷ lệ của hằng số tốc độ cũng là một hằng số, hiện được gọi là hằng số cân bằng.

Tham khảo[sửa | sửa mã nguồn]

  1. ^ Atkins, Peter; De Paula, Julio (2006). Atkins' Physical Chemistry (ấn bản 8). W. H. Freeman. tr. 200–202. ISBN 0-7167-8759-8. 
  2. ^ Atkins, Peter W.; Jones, Loretta. Chemical Principles: The Quest for Insight (ấn bản 2). ISBN 0-7167-9903-0. 
  3. ^ International Union of Pure and Applied Chemistry. "{{{title}}}". Toàn văn bản Giản Lược Thuật Ngữ Hoá Học.
  4. ^ Berthollet, C.L. (1803). Essai de statique chimique [Essay on chemical statics] (bằng tiếng Pháp). Paris, France: Firmin Didot.  On pp. 404–407, Berthellot mentions that when he accompanied Napoleon on his expedition to Egypt, he (Berthellot) visited Lake Natron and found sodium carbonate along its shores. He realized that this was a product of the reverse of the usual reaction Na2CO3 + CaCl2 → 2NaCl + CaCO3↓ and therefore that the final state of a reaction was a state of equilibrium between two opposing processes. From p. 405: " … la décomposition du muriate de soude continue donc jusqu'à ce qu'il se soit formé assez de muriate de chaux, parce que l'acide muriatique devant se partager entre les deux bases en raison de leur action, il arrive un terme où leurs forces se balancent." (… the decomposition of the sodium chloride thus continues until enough calcium chloride is formed, because the hydrochloric acid must be shared between the two bases in the ratio of their action [i.e., capacity to react]; it reaches an end [point] at which their forces are balanced.)
  5. ^ The notation cân bằng với was proposed in 1884 by the Dutch chemist Jacobus Henricus van 't Hoff. See: van 't Hoff, J.H. (1884). Études de Dynamique Chemique [Studies of chemical dynamics] (bằng tiếng Pháp). Amsterdam, Netherlands: Frederik Muller & Co. tr. 4–5.  Van 't Hoff called reactions that didn't proceed to completion "limited reactions". From pp. 4–5: "Or M. Pfaundler a relié ces deux phénomênes … s'accomplit en même temps dans deux sens opposés." (Now Mr. Pfaundler has joined these two phenomena in a single concept by considering the observed limit as the result of two opposing reactions, driving the one in the example cited to the formation of sea salt [i.e., NaCl] and nitric acid, [and] the other to hydrochloric acid and sodium nitrate. This consideration, which experiment validates, justifies the expression "chemical equilibrium", which is used to characterize the final state of limited reactions. I would propose to translate this expression by the following symbol: