Chủ đề:Toán học/Bài viết chọn lọc

Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướng Bước tới tìm kiếm
Georg Cantor2.jpg

Georg Ferdinand Ludwig Philipp Cantor (1845 - 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một lý thuyết đã trở thành lý thuyết nền tảng trong toán học. Cantor đã cho thấy tầm quan trọng của quan hệ song ánh giữa các phần tử của hai tập hợp, định nghĩa các tập vô hạn và các tập sắp tốt, và chứng minh rằng các số thực là "đông đúc" hơn các số tự nhiên. Trên thực tế, phương pháp chứng minh định lý này của Cantor ngụ ý sự tồn tại "vô hạn các tập vô hạn". Ông định nghĩa bản số và số thứ tự và phép tính về chúng. Sự nghiệp toán học vĩ đại của ông nhận được sự quan tâm lớn về mặt triết học, nhờ đó khiến ông càng được biết đến nhiều hơn. Lý thuyết của Cantor về số siêu hạn ban đầu bị xem là phản trực giác -thậm chí gây sốc- tới mức nó vấp phải sự chống đối của những nhà toán học lừng lẫy đương thời như Leopold KroneckerHenri Poincaré, trong khi Ludwig Wittgenstein đưa ra những phản đối về triết học. Sự chỉ trích khắc nghiệt cũng đi cùng với sự tôn vinh đối với Cantor. Năm 1904, Hội Hoàng gia Luân Đôn trao tặng cho Cantor Huy chương Sylvester, danh dự cao nhất của Hội dành cho toán học. Có người cho rằng Cantor tin rằng lý thuyết về số siêu hạn của ông là được Chúa mặc khải. David Hilbert đã lên tiếng bảo vệ với lời tuyên bố nổi tiếng: "Không ai đuổi được chúng ta khỏi Thiên giới mà Cantor đã sáng tạo nên". (xem tiếp…)


Rubik's cube.svg

Trong toán học, nhóm (group) là tập hợp các phần tử cùng với phép toán hai ngôi kết hợp hai phần tử bất kỳ của tập hợp thành một phần tử thứ ba thỏa mãn bốn điều kiện gọi là tiên đề nhóm, lần lượt là tính đóng, kết hợp, phần tử đơn vịtính khả nghịch. Một trong những ví dụ quen thuộc nhất về nhóm đó là tập hợp các số nguyên cùng với phép cộng; khi thực hiện cộng hai số nguyên bất kỳ luôn thu được một số nguyên khác. Hình thức trình bày trừu tượng dựa trên tiên đề nhóm, tách biệt nó khỏi bản chất cụ thể của bất kỳ nhóm đặc biệt nào và phép toán trên nhóm, cho phép nhóm bao trùm lên nhiều thực thể với nguồn gốc toán học rất khác nhau trong đại số trừu tượng và rộng hơn, và có thể giải quyết một cách linh hoạt, trong khi vẫn giữ lại khía cạnh cấu trúc căn bản của chúng. Sự có mặt khắp nơi của nhóm trong nhiều lĩnh vực bên trong và ngoài toán học khiến chúng trở thành nguyên lý tổ chức trung tâm của toán học đương đại.

Nhóm chia sẻ mối quan hệ họ hàng cơ bản với khái niệm đối xứng. Ví dụ, nhóm đối xứng chứa đựng các đặc điểm đối xứng của một đối tượng hình học như: nhóm bao gồm tập hợp các phép biến đổi không làm thay đổi đối tượng và các phép toán kết hợp hai phép biến đổi này bằng cách thực hiện từng phép biến đổi một. Nhóm Lie là những nhóm đối xứng sử dụng trong Mô hình Chuẩn của vật lý hạt; nhóm các điểm được sử dụng để nghiên cứu các hiện tượng đối xứng trong hóa học phân tử; và nhóm Poincaré dùng để biểu diễn các tính chất đối xứng vật lý trong thuyết tương đối hẹp. (xem tiếp…)


Noether.jpg

Emmy Noether (23 tháng 3, 1882 – 14 tháng 4, 1935), là nhà toán học có ảnh hưởng người Đức nổi tiếng vì những đóng góp nền tảng và đột phá trong lĩnh vực đại số trừu tượngvật lý lý thuyết. Được Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl, Norbert Wiener và những người khác miêu tả là một trong những nhà nữ toán học quan trọng nhất trong lịch sử toán học, bà đã làm lên cuộc cách mạng trong lý thuyết vành, trường, và đại số trên một trường. Trong vật lý học, định lý Noether giải thích mối liên hệ sâu sắc giữa tính đối xứng và các định luật bảo toàn. Các công trình toán học của Noether được chia thành ba "kỷ nguyên" chính. Trong giai đoạn đầu (1908–19), bà có những đóng góp quan trọng cho lý thuyết các bất biến đại số và trường số. Nghiên cứu về bất biến vi phân trong phép tính biến phân, hay định lý Noether, đã trở thành "một trong những định lý toán học quan trọng nhất từng được chứng minh giúp thúc đẩy sự phát triển của vật lý hiện đại". Trong kỷ nguyên thứ hai (1920–26), bà bắt đầu công trình mà "thay đổi bộ mặt của đại số [trừu tượng]". Trong kỷ nguyên thứ ba (1927–35), bà công bố chủ yếu các công trình trong đại số không giao hoán và số siêu phức cũng như thống nhất lý thuyết biểu diễn nhóm với lý thuyết mô đun và iđêan. (xem tiếp…)


Pi pie2.jpg

Số π là một hằng số toán học có giá trị bằng tỷ số chu vi đường tròn chia cho đường kính của đường tròn đó. Hằng số này xấp xỉ bằng 3,14159, còn được viết là pi và được biểu diễn bằng chữ cái Hy Lạp π từ giữa thế kỉ 18. π là một số vô tỉ, nghĩa là không thể biểu diễn chính xác nó thành tỉ số của hai số nguyên (chẳng hạn như 22/7 hay các phân số khác thường dùng để xấp xỉ π); do đó, biểu diễn thập phân của nó không bao giờ kết thúc và không bao giờ tuần hoàn. Hơn nữa, π còn là một số siêu việt - tức là một số không phải là nghiệm của bất kì đa thức khác không với hệ số hữu tỉ nào. Tính siêu việt của π ngụ ý rằng không thể nào giải đáp được thách thức có từ thời cổ về cầu phương hình tròn chỉ với compa và thước kẻ. Các con số trong biểu diễn thập phân của π dường như xuất hiện theo một thứ tự ngẫu nhiên, mặc dù người ta chưa tìm được bằng chứng nào cho tính ngẫu nhiên này. Trong hàng ngàn năm, các nhà toán học đã nỗ lực mở rộng hiểu biết của con người về số π, đôi khi bằng việc tính toán giá trị của nó với độ chính xác ngày càng cao. Trước thế kỉ 15, các nhà toán học như ArchimedesLưu Huy đã sử dụng các kĩ thuật hình học, dựa trên các đa giác, để đánh giá giá trị của π. Bắt đầu từ thế kỉ 15, những thuật toán mới dựa trên chuỗi vô hạn đã cách mạng hóa việc tính toán số π, và được những nhà toán học bao gồm Madhava của Sangamagrama, Isaac Newton, Leonhard Euler, Carl Friedrich Gauss, và Srinivasa Ramanujan sử dụng. (xem tiếp…)