Hàm số học

Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướng Bước tới tìm kiếm

Trong lý thuyết số, hàm số học, hoặc hàm số lý thuyết số [1][2] đối với hầu hết các tác giả [3][4][5] nói đến bất kỳ hàm f (n) nào có miền là số nguyên dương và phạm vi của nó là một tập hợp con của tập số phức. Hardy & Wright bao gồm trong định nghĩa yêu cầu rằng một hàm số học cần "biểu thị một số tính chất số học".[6]

Một ví dụ về hàm số học là hàm số ước có giá trị tại một số nguyên dương n bằng số ước số của n.

Có một lớp lớn hơn của các hàm lý thuyết số không phù hợp với định nghĩa trên, ví dụ các hàm đếm số nguyên tố. Bài viết này cung cấp các liên kết đến hàm của cả hai lớp này.

Nhiều hàm số được đề cập trong bài viết này có các mở rộng là chuỗi liên quan đến các tổng này; xem bài viết Tổng Ramanujan để biết ví dụ.

Hàm có tính chất nhân và cộng[sửa | sửa mã nguồn]

Hàm số học a

  • cộng hoàn toàn nếu a (mn) = a (m) + a (n) cho tất cả các số tự nhiên mn;
  • nhân hoàn toàn nếu a (mn) = a (m)a (n) cho tất cả các số tự nhiên mn;

Hai số nguyên mn được gọi là số nguyên tố cùng nhau nếu ước số chung lớn nhất của chúng là 1; tức là, nếu không có số nguyên tố nào là ước số chung của cả hai.

Khi đó hàm số học a là có tính chất

  • cộng nếu a (mn) = a (m) + a (n) cho tất cả các số tự nhiên nguyên tố cùng nhau mn;
  • nhân nếu a (mn) = a (m)a(n) cho tất cả các số tự nhiên nguyên tố cùng nhau mn.

Ký hiệu[sửa | sửa mã nguồn]

  và    có nghĩa là tổng hoặc tích của tất cả các giá trị hàm trên các số nguyên tố:

Tương tự    và    có nghĩa là tổng hoặc tích trên tất cả các lũy thừa của các số nguyên tố với số mũ dương (do vậy không bao gồm 1):

  và    có nghĩa là tổng hoặc tích trên tất cả các ước số dương của n, bao gồm 1 và n. Ví dụ: nếu n = 12,

Các ký hiệu này có thể được kết hợp:    và    có nghĩa là tổng hoặc tích trên tất cả các ước nguyên tố của n. Ví dụ: nếu n = 18,

và tương tự    và    có nghĩa là tổng hoặc tích trên tất cả các lũy thừa của số nguyên tố mà là ước số của n. Ví dụ: nếu n = 24,

Tham khảo[sửa | sửa mã nguồn]

  1. ^ Long (1972, tr. 151)
  2. ^ Pettofrezzo & Byrkit (1970, tr. 58)
  3. ^ Niven & Zuckerman, 4.2.
  4. ^ Nagell, I.9.
  5. ^ Bateman & Diamond, 2.1.
  6. ^ Hardy & Wright, intro. to Ch. XVI

Sách tham khảo[sửa | sửa mã nguồn]