Hợp số

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.[1][2]

Mọi số tự nhiên bất kỳ hoặc là 1, hoặc là số nguyên tố, hoặc là hợp số.

Định lý cơ bản của số học nói rằng mọi hợp số đều phân tích được dưới dạng tích các số nguyên tố và cách biểu diễn đó là duy nhất nếu không tính đến thứ tự của các thừa số.[3][4][5][6][7].

Thuộc tính[sửa | sửa mã nguồn]

  • Mọi số chẵn lớn hơn 2 đều là hợp số.
  • Mọi hợp số không phải là số nguyên tố.
  • Hợp số nhỏ nhất là 4.
  • (n-1)!\,\,\,\equiv\,\,0\pmod {n} đối với mọi hợp số n lớn hơn 4 (định lý Wilson).

Xem thêm[sửa | sửa mã nguồn]

Chú thích[sửa | sửa mã nguồn]

  1. ^ Pettofrezzo & Byrkit (1970, tr. 23–24)
  2. ^ Long (1972, tr. 16)
  3. ^ Từ điển toán học thông dụng, trang 334. Tác giả Ngô Thúc Lanh - Đoàn Quỳnh - Nguyễn Đình Trí. Nhà xuất bản giáo dục, năm 2000
  4. ^ Fraleigh (1976, tr. 270)
  5. ^ Long (1972, tr. 44)
  6. ^ McCoy (1968, tr. 85)
  7. ^ Pettofrezzo & Byrkit (1970, tr. 53)

Tham khảo[sửa | sửa mã nguồn]