Bước tới nội dung

Khác biệt giữa bản sửa đổi của “Toán tài chính”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
Trang mới: “{{ref improve|date=May 2013}} '''Tài chính toán học''' là một lĩnh vực toán học ứng dụng, liên quan đến các thị trường tài ch…”
(Không có sự khác biệt)

Phiên bản lúc 08:17, ngày 12 tháng 7 năm 2013

Tài chính toán học là một lĩnh vực toán học ứng dụng, liên quan đến các thị trường tài chính. Nói chung, tài chính toán học sẽ thừa kế và mở rộng các mô hình toán học hay con số mà không cần phải thiết lập một liên kết đến lý thuyết tài chính, bằng cách lấy giá cả thị trường quan sát như đầu vào. Tính thống nhất toán học là cần thiết, chứ không phải là tính phù hợp với lý thuyết kinh tế.

Vì vậy, ví dụ, trong khi một nhà kinh tế học tài chính có thể nghiên cứu các lý do cấu trúc tại sao một công ty có thể có một số giá cổ phần nhất định, một nhà toán học tài chính có thể lấy giá cổ phần như một yếu tố đã cho, và cố gắng để sử dụng tính toán ngẫu nhiên để có được giá trị tương ứng của các phái sinh của cổ phiếu (xem: Định giá quyền chọn, Mô hình hóa tài chính). Định lý cơ bản của định giá không hưởng chênh lệch là một trong những định lý quan trọng trong tài chính toán học, trong khi phương trình và công thức Black-Scholes nằm trong số những kết quả quan trọng.

Tài chính toán học cũng trùng với rất nhiều lĩnh vực như tài chính điện toán (cũng như kỹ nghệ tài chính). Môn học sau tập trung vào ứng dụng, trong khi môn học trước tập trung vào lập mô hình và phái sinh (xem: phân tích định lượng), thường bởi sự giúp đỡ của các mô hình tài sản ngẫu nhiên. Nói chung, có tồn tại hai nhánh riêng biệt của tài chính đòi hỏi các kỹ thuật định lượng tiên tiến: định giá các phái sinh trên một mặt, và quản lý rủi ro - danh mục đầu tư trên mặt khác.

Nhiều viện đại học cung cấp các chương trình cấp độ và nghiên cứu trong tài chính toán học, xem Thạc sĩ Tài chính toán học.

Lịch sử: Q so với P

There exist two separate branches of finance that require advanced quantitative techniques: derivatives pricing and risk and portfolio management. One of the main differences is that they use different probabilities, namely the risk-neutral probability (or arbitrage-pricing probability), denoted by "Q", and the actual (or actuarial) probability, denoted by "P".

Định giá phái sinh: thế giới Q

The Q world
Goal "extrapolate the present"
Environment risk-neutral probability
Processes continuous-time martingales
Dimension low
Tools Ito calculus, PDE’s
Challenges calibration
Business sell-side

The goal of derivatives pricing is to determine the fair price of a given security in terms of more liquid securities whose price is determined by the law of supply and demand. The meaning of "fair" depends, of course, on whether one considers buying or selling the security. Examples of securities being priced are plain vanilla and exotic options, convertible bonds, etc.

Once a fair price has been determined, the sell-side trader can make a market on the security. Therefore, derivatives pricing is a complex "extrapolation" exercise to define the current market value of a security, which is then used by the sell-side community. Quantitative derivatives pricing was initiated by Louis Bachelier in The Theory of Speculation (published 1900), with the introduction of the most basic and most influential of processes, the Brownian motion, and its applications to the pricing of options. Bachelier modeled the time series of changes in the logarithm of stock prices as a random walk in which the short-term changes had a finite variance. This causes longer-term changes to follow a Gaussian distribution. Bachelier's work, however, was largely unknown outside academia.[cần dẫn nguồn]

The theory remained dormant until Fischer Black and Myron Scholes, along with fundamental contributions by Robert C. Merton, applied the second most influential process, the geometric Brownian motion, to option pricing. For this M. Scholes and R. Merton were awarded the 1997 Nobel Memorial Prize in Economic Sciences. Black was ineligible for the prize because of his death in 1995.

The next important step was the fundamental theorem of asset pricing by Harrison and Pliska (1981), according to which the suitably normalized current price P0 of a security is arbitrage-free, and thus truly fair, only if there exists a stochastic process Pt with constant expected value which describes its future evolution:

 

 

 

 

(1)

A process satisfying (1) is called a "martingale". A martingale does not reward risk. Thus the probability of the normalized security price process is called "risk-neutral" and is typically denoted by the blackboard font letter "".

The relationship (1) must hold for all times t: therefore the processes used for derivatives pricing are naturally set in continuous time.

The quants who operate in the Q world of derivatives pricing are specialists with deep knowledge of the specific products they model.

Securities are priced individually, and thus the problems in the Q world are low-dimensional in nature. Calibration is one of the main challenges of the Q world: once a continuous-time parametric process has been calibrated to a set of traded securities through a relationship such as (1), a similar relationship is used to define the price of new derivatives.

The main quantitative tools necessary to handle continuous-time Q-processes are Ito’s stochastic calculus and partial differential equations (PDE’s).

Quản lý rủi ro và danh mục đầu tư: thế giới P

The P world
Goal "model the future"
Environment real probability
Processes discrete-time series
Dimension large
Tools multivariate statistics
Challenges estimation
Business buy-side

Risk and portfolio management aims at modelling the probability distribution of the market prices of all the securities at a given future investment horizon.
This "real" probability distribution of the market prices is typically denoted by the blackboard font letter "", as opposed to the "risk-neutral" probability "" used in derivatives pricing.
Based on the P distribution, the buy-side community takes decisions on which securities to purchase in order to improve the prospective profit-and-loss profile of their positions considered as a portfolio.

The quantitative theory of risk and portfolio management started with the mean-variance framework of Harry Markowitz (1952), who caused a shift away from the concept of trying to identify the best individual stock for investment. Using a linear regression strategy to understand and quantify the risk (i.e. variance) and return (i.e. mean) of an entire portfolio of stocks, bonds, and other securities, an optimization strategy was used to choose a portfolio with largest mean return subject to acceptable levels of variance in the return. Next, breakthrough advances were made with the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) developed by Treynor (1962), Mossin (1966), William Sharpe (1964), Lintner (1965) and Ross (1976).

For their pioneering work, Markowitz and Sharpe, along with Merton Miller, shared the 1990 Nobel Memorial Prize in Economic Sciences, for the first time ever awarded for a work in finance.

The portfolio-selection work of Markowitz and Sharpe introduced mathematics to the "black art" of investment management. With time, the mathematics has become more sophisticated. Thanks to Robert Merton and Paul Samuelson, one-period models were replaced by continuous time, Brownian-motion models, and the quadratic utility function implicit in mean–variance optimization was replaced by more general increasing, concave utility functions.[1] Furthermore, in more recent years the focus shifted toward estimation risk, i.e., the dangers of incorrectly assuming that advanced time series analysis alone can provide completely accurate estimates of the market parameters [2]

Much effort has gone into the study of financial markets and how prices vary with time. Charles Dow, one of the founders of Dow Jones & Company and The Wall Street Journal, enunciated a set of ideas on the subject which are now called Dow Theory. This is the basis of the so-called technical analysis method of attempting to predict future changes. One of the tenets of "technical analysis" is that market trends give an indication of the future, at least in the short term. The claims of the technical analysts are disputed by many academics.

Chỉ trích

Over the years, increasingly sophisticated mathematical models and derivative pricing strategies have been developed, but their credibility was damaged by the financial crisis of 2007–2010.
Contemporary practice of mathematical finance has been subjected to criticism from figures within the field notably by Nassim Nicholas Taleb, a professor of financial engineering at Polytechnic Institute of New York University, in his book The Black Swan[3] and Paul Wilmott. Taleb claims that the prices of financial assets cannot be characterized by the simple models currently in use, rendering much of current practice at best irrelevant, and, at worst, dangerously misleading. Wilmott and Emanuel Derman published the Financial Modelers' Manifesto in January 2008[4] which addresses some of the most serious concerns.
Bodies such as the Institute for New Economic Thinking are now attempting to establish more effective theories and methods.[5]

In general, modeling the changes by distributions with finite variance is, increasingly, said to be inappropriate.[6] In the 1960s it was discovered by Benoît Mandelbrot that changes in prices do not follow a Gaussian distribution, but are rather modeled better by Lévy alpha-stable distributions. The scale of change, or volatility, depends on the length of the time interval to a power a bit more than 1/2. Large changes up or down are more likely than what one would calculate using a Gaussian distribution with an estimated standard deviation.[3] See also Financial models with long-tailed distributions and volatility clustering.

Mathematical finance articles

See also Outline of finance: § Financial mathematics; § Mathematical tools; § Derivatives pricing.

Các công cụ toán học

Định giá phái sinh

Xem thêm

Chú thích

  1. ^ Karatzas, Ioannis; Shreve, Steve (1998). Methods of Mathematical Finance. Secaucus, NJ, USA: Springer-Verlag New York, Incorporated. ISBN 9780387948393.
  2. ^ Meucci, Attilio (2005). Risk and Asset Allocation. Springer. ISBN 9783642009648.
  3. ^ a b Taleb, Nassim Nicholas (2007). The Black Swan: The Impact of the Highly Improbable. Random House Trade. ISBN 978-1-4000-6351-2.
  4. ^ “Financial Modelers' Manifesto”. Paul Wilmott's Blog. 8 tháng 1 năm 2009. Truy cập ngày 1 tháng 6 năm 2012.
  5. ^ Gillian Tett (15 tháng 4 năm 2010). “Mathematicians must get out of their ivory towers”. Financial Times.
  6. ^ Svetlozar T. Rachev, Frank J. Fabozzi, Christian Menn (2005). Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing. John Wiley and Sons. ISBN 978-0471718864.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)

Tham khảo

Liên kết ngoài

Bản mẫu:Rủi ro tài chính