Khác biệt giữa bản sửa đổi của “Cắt nối ARN”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
n Replace dead-url= with url-status=.
Bổ sung thông tin và nguồn trích dẫn, thêm thể loại
Dòng 36: Dòng 36:
# Sau đó, U1 liên kết với chuỗi GU tại vị trí nối 5 'của intron này; SF1 (splicing factor 1 tức yếu tố cắt nối 1) liên kết với điểm nhánh cuối intron; U2 liên kết tại vị trí nối 3 'của intron.<ref name="matera2014">{{cite journal|vauthors=Matera AG, Wang Z|date=February 2014|title=A day in the life of the spliceosome|journal=Nature Reviews. Molecular Cell Biology|volume=15|issue=2|pages=108–21|doi=10.1038/nrm3742|pmc=4060434|pmid=24452469}}</ref><ref name="guth2000">{{cite journal|vauthors=Guth S, Valcárcel J|date=December 2000|title=Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF|journal=The Journal of Biological Chemistry|volume=275|issue=48|pages=38059–66|doi=10.1074/jbc.M001483200|pmid=10954700}}</ref> Đoạn intron chịu xúc tác bị uốn cong lại.
# Sau đó, U1 liên kết với chuỗi GU tại vị trí nối 5 'của intron này; SF1 (splicing factor 1 tức yếu tố cắt nối 1) liên kết với điểm nhánh cuối intron; U2 liên kết tại vị trí nối 3 'của intron.<ref name="matera2014">{{cite journal|vauthors=Matera AG, Wang Z|date=February 2014|title=A day in the life of the spliceosome|journal=Nature Reviews. Molecular Cell Biology|volume=15|issue=2|pages=108–21|doi=10.1038/nrm3742|pmc=4060434|pmid=24452469}}</ref><ref name="guth2000">{{cite journal|vauthors=Guth S, Valcárcel J|date=December 2000|title=Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF|journal=The Journal of Biological Chemistry|volume=275|issue=48|pages=38059–66|doi=10.1074/jbc.M001483200|pmid=10954700}}</ref> Đoạn intron chịu xúc tác bị uốn cong lại.
# Cuối cùng vị trí 3' bị cắt có năng lượng nhờ thủy phân ATP. Đoạn bị cắt tách khỏi mA RN sơ khia rồi bị phân giải. Các snRNP giải phóng khỏi đoạn đã cắt.<ref>{{cite journal|vauthors=Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF|date=December 2004|title=Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes|journal=The Journal of Allergy and Clinical Immunology|volume=114|issue=6|pages=1463–70|doi=10.1016/j.jaci.2004.09.006|pmc=3902068|pmid=15577853}}</ref>
# Cuối cùng vị trí 3' bị cắt có năng lượng nhờ thủy phân ATP. Đoạn bị cắt tách khỏi mA RN sơ khia rồi bị phân giải. Các snRNP giải phóng khỏi đoạn đã cắt.<ref>{{cite journal|vauthors=Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF|date=December 2004|title=Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes|journal=The Journal of Allergy and Clinical Immunology|volume=114|issue=6|pages=1463–70|doi=10.1016/j.jaci.2004.09.006|pmc=3902068|pmid=15577853}}</ref>

=== Cắt nối tARN ===

* ARN thông tin (mARN) ở nhân thực phải cắt nối là đương nhiên, vì gen phân mảnh. Tuy nhiên, gần đây cũng đã phát hiện ARN vận chuyển ([[TRNA|tARN)]] cũng cần cắt và nối, mặc dù hiếm gặp và khác thường. Phản ứng cắt nối liên quan đến con đường hóa sinh khác hẳn.
* Người ta đã xác định quá trình này xảy ra ở nấm men ''[[Saccharomyces cerevisiae]]''. Enzym ''endonuclease heterotetramer'' của nó (gồm TSEN54, TSEN2, TSEN34 và TSEN15) đã cắt tARN sơ khai tại hai đầu một vòng lặp (loop) để tạo thành một nửa là tARN 5' kết thúc ở đầu 3'-cyclic phosphodiester, còn nửa kia là tARN 3' kết thúc ở nhóm 5'-hydroxyl và loại bỏ một intron.<ref name="trotta1997">{{cite journal|vauthors=Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN|date=June 1997|title=The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases|journal=Cell|volume=89|issue=6|pages=849–58|doi=10.1016/S0092-8674(00)80270-6|pmid=9200603|s2cid=16055381}}</ref> Sau đó, tARN-kinaza sẽ phosphoryl hóa nhóm 5'-hydroxyl bằng cách sử dụng [[Adenozin triphotphat|ATP]]. Enzym tARN-phosphodiesteraza cắt liên kết phosphodiester, tạo thành đầu 2'-phosphoryl hoá 3 ', rồi enzym tARN-ligaza thêm một [[Adenosine monophosphate|AMP]] vào đầu 5 ' của nửa 3' kia rồi nối hai nửa lại với nhau.<ref name="westaway1988">{{cite journal|vauthors=Westaway SK, Phizicky EM, Abelson J|date=March 1988|title=Structure and function of the yeast tRNA ligase gene|url=http://www.jbc.org/content/263/7/3171.abstract|journal=The Journal of Biological Chemistry|volume=263|issue=7|pages=3171–76|pmid=3277966|archive-url=https://web.archive.org/web/20181118212051/http://www.jbc.org/content/263/7/3171.abstract|archive-date=2018-11-18|access-date=2014-12-17|url-status=live}}</ref><ref name="paushkin2004">{{cite journal|vauthors=Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR|date=April 2004|title=Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation|journal=Cell|volume=117|issue=3|pages=311–21|doi=10.1016/S0092-8674(04)00342-3|pmid=15109492|s2cid=16049289}}</ref><ref name="soma2014">{{cite journal|vauthors=Soma A|date=1 April 2014|title=Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development|journal=Frontiers in Genetics|volume=5|pages=63|doi=10.3389/fgene.2014.00063|pmc=3978253|pmid=24744771}}</ref>


== Xem thêm ==
== Xem thêm ==
Dòng 44: Dòng 49:
== Nguồn trích dẫn ==
== Nguồn trích dẫn ==
{{tham khảo}}
{{tham khảo}}

== Liên kết ngoài ==

* [http://vcell.ndsu.nodak.edu/animations/mrnasplicing/index.htm Virtual Cell Animation Collection: mRNA Splicing]
* {{MeshName|RNA+Splicing}}


[[Thể loại:Di truyền phân tử]]
[[Thể loại:Di truyền phân tử]]
[[Thể loại:Cắt nối ARN]]
[[Thể loại:Biểu hiện gen]]
[[Thể loại:Thể cắt nối]]

Phiên bản lúc 12:08, ngày 9 tháng 4 năm 2021

Trong cắt nối ARN, phân tử ARN sơ khai bị loại bỏ các đoạn intrôn, rồi nối các đoạn êxôn lại.

Cắt nối ARN là quá trình loại bỏ các chuỗi không mã hoá (intrôn) ở mARN sơ khai và nối các chuỗi mã hóa (êxôn) lại với nhau để tạo nên mARN trưởng thành có thể dịch mã thành prôtêin.[1][2][3]

Đây là thuật ngữ của Di truyền học phân tử, trong tiếng AnhRNA splicing (nghĩa đen: ghép nối ARN) dùng để chỉ một giai đoạn của tiến trình xử lý ARN diễn ra ở tế bào sống trong tự nhiên, tạo ra ARN thông tin trực tiếp làm khuôn cho sinh tổng hợp prôtêin (tức dịch mã).[4][5]

Tổng quan

  • Ở nhiều sinh vật nhân thực (eukaryote), các gen mã hoá prôtêin là gen phân mảnh gồm các êxôn (đoạn có mã di truyền mang thông tin của axit amin) và intrôn (không mang mang thông tin của axit amin). Các intrôn không có mã di truyền nhưng lại rất cần cho cấu trúc của nhiễm sắc thể chứa ADN mang các gen. Nhưng khi dịch mã, thì các intrôn lại không cần thiết trong khuôn của mARN để tạo thành chuỗi pôlypeptit nữa, nên trong quá trình xử lý ARN sau phiên mã, thì có giai đoạn cắt nối này.
  • Quá trình cắt nối này không chỉ loại bỏ các đoạn không cần cho dịch mã, mà còn rút ngắn chiều dài tuyến tính của ARN, nên sự tổng hợp chuỗi pôlypeptit nhanh hơn.
  • Giai đoạn cắt nối ARN được thực hiện qua một loạt các phản ứng, được xúc tác bởi thể cắt nối (spliceosome) là một phức hợp ribônuclêôprôtêin trong nhân kích thước nhỏ (small nuclear ribonucleoproteins, viết tắt là snRNP).[2][3]
  • Sự cắt nối ARN sơ khai không chỉ diễn ra với mARN, mà còn có thể diễn ra với các loại ARN khác (như tARN). Ở đây chỉ trình bày cắt nối ở mARN.

Cơ chế

Cơ chế chung

Trong tiến hóa của sinh giới, chỉ có các loài sinh vật nhân thực mang ADN có chứa lẫn lộn êxônintrôn, nên mới cần cắt nối ARN, do đó chỉ các loài này mới bảo tồn thể cắt nối.[2][3] Tuy nhiên, đã phát hiện một số sinh vật nhân sơ cũng có. Do đó, một số nhà khoa học đã được đề xuất mô hình "intron muộn" và mô hình "intron sớm" (xem intron evolution - sự tiến hóa của intron).

Khác nhau về cắt nối
Nhân thực Nhân sơ
Có thể cắt nối +
Tự cắt nối + +
tARN + +
Các đoạn trong một mảnh intrôn.

Cơ chế cắt nối ở nhân thực

Sơ đổ mô tả hoạt động cắt nối ARN nhờ snRNP.

Diễn biến quá trình này rất phức tạp, nhưng có thể chia thành ba bước chính, tóm tắt như sau.

  1. Ngay sau khi được tạo thành qua phiên mã từ gen, thì bản mã phiên này (tức mARN) mới chỉ là phân tử sơ khai hay tiền mARN (pre-mRNA).[6] Thể cắt nối (spliceosome) gồm năm phân tử snRNP (đọc là "snurps") sẽ liên kết với đoạn intron (bước 1 ở hình 2). Các thành phần ARN của snRNP sẽ tương tác với đoạn intron này, các thành này đều có chứa nhiều GU ở vị trí nối 5' và nhiều AG tại vị trí nối 3'; nên năm phân tử snRNP này được kí hiệu U1, U2, U4, U5 và U6.[7][8]
  2. Sau đó, U1 liên kết với chuỗi GU tại vị trí nối 5 'của intron này; SF1 (splicing factor 1 tức yếu tố cắt nối 1) liên kết với điểm nhánh cuối intron; U2 liên kết tại vị trí nối 3 'của intron.[9][10] Đoạn intron chịu xúc tác bị uốn cong lại.
  3. Cuối cùng vị trí 3' bị cắt có năng lượng nhờ thủy phân ATP. Đoạn bị cắt tách khỏi mA RN sơ khia rồi bị phân giải. Các snRNP giải phóng khỏi đoạn đã cắt.[11]

Cắt nối tARN

  • ARN thông tin (mARN) ở nhân thực phải cắt nối là đương nhiên, vì gen phân mảnh. Tuy nhiên, gần đây cũng đã phát hiện ARN vận chuyển (tARN) cũng cần cắt và nối, mặc dù hiếm gặp và khác thường. Phản ứng cắt nối liên quan đến con đường hóa sinh khác hẳn.
  • Người ta đã xác định quá trình này xảy ra ở nấm men Saccharomyces cerevisiae. Enzym endonuclease heterotetramer của nó (gồm TSEN54, TSEN2, TSEN34 và TSEN15) đã cắt tARN sơ khai tại hai đầu một vòng lặp (loop) để tạo thành một nửa là tARN 5' kết thúc ở đầu 3'-cyclic phosphodiester, còn nửa kia là tARN 3' kết thúc ở nhóm 5'-hydroxyl và loại bỏ một intron.[12] Sau đó, tARN-kinaza sẽ phosphoryl hóa nhóm 5'-hydroxyl bằng cách sử dụng ATP. Enzym tARN-phosphodiesteraza cắt liên kết phosphodiester, tạo thành đầu 2'-phosphoryl hoá 3 ', rồi enzym tARN-ligaza thêm một AMP vào đầu 5 ' của nửa 3' kia rồi nối hai nửa lại với nhau.[13][14][15]

Xem thêm

Nguồn trích dẫn

  1. ^ Handbook of Clinical Neurology (2014). “RNA Splicing”.
  2. ^ a b c Phạm Thành Hổ: "Di truyền học" - Nhà xuất bản Giáo dục, 1998.
  3. ^ a b c Đỗ Lê Thăng: "Di truyền học" - Nhà xuất bản Giáo dục, 2005.
  4. ^ Gilbert W (tháng 2 năm 1978). “Why genes in pieces?”. Nature. 271 (5645): 501. doi:10.1038/271501a0. PMID 622185.
  5. ^ Tonegawa S, Maxam AM, Tizard R, Bernard O, Gilbert W (tháng 3 năm 1978). “Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain”. Proceedings of the National Academy of Sciences of the United States of America. 75 (3): 1485–9. doi:10.1073/pnas.75.3.1485. PMC 411497. PMID 418414.
  6. ^ Campbell và cộng sự: "Sinh học" - Nhà xuất bản Giáo dục, 2010.
  7. ^ Matlin AJ, Clark F, Smith CW (tháng 5 năm 2005). “Understanding alternative splicing: towards a cellular code”. Nature Reviews. Molecular Cell Biology. 6 (5): 386–98. doi:10.1038/nrm1645. PMID 15956978.
  8. ^ Graveley BR, Hertel KJ, Maniatis T (tháng 6 năm 2001). “The role of U2AF35 and U2AF65 in enhancer-dependent splicing”. RNA. 7 (6): 806–18. doi:10.1017/s1355838201010317. PMC 1370132. PMID 11421359. Bản gốc lưu trữ ngày 20 tháng 11 năm 2018. Truy cập ngày 17 tháng 12 năm 2014.
  9. ^ Matera AG, Wang Z (tháng 2 năm 2014). “A day in the life of the spliceosome”. Nature Reviews. Molecular Cell Biology. 15 (2): 108–21. doi:10.1038/nrm3742. PMC 4060434. PMID 24452469.
  10. ^ Guth S, Valcárcel J (tháng 12 năm 2000). “Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF”. The Journal of Biological Chemistry. 275 (48): 38059–66. doi:10.1074/jbc.M001483200. PMID 10954700.
  11. ^ Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF (tháng 12 năm 2004). “Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes”. The Journal of Allergy and Clinical Immunology. 114 (6): 1463–70. doi:10.1016/j.jaci.2004.09.006. PMC 3902068. PMID 15577853.
  12. ^ Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN (tháng 6 năm 1997). “The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases”. Cell. 89 (6): 849–58. doi:10.1016/S0092-8674(00)80270-6. PMID 9200603. S2CID 16055381.
  13. ^ Westaway SK, Phizicky EM, Abelson J (tháng 3 năm 1988). “Structure and function of the yeast tRNA ligase gene”. The Journal of Biological Chemistry. 263 (7): 3171–76. PMID 3277966. Lưu trữ bản gốc ngày 18 tháng 11 năm 2018. Truy cập ngày 17 tháng 12 năm 2014.
  14. ^ Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR (tháng 4 năm 2004). “Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation”. Cell. 117 (3): 311–21. doi:10.1016/S0092-8674(04)00342-3. PMID 15109492. S2CID 16049289.
  15. ^ Soma A (1 tháng 4 năm 2014). “Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development”. Frontiers in Genetics. 5: 63. doi:10.3389/fgene.2014.00063. PMC 3978253. PMID 24744771.

Liên kết ngoài