Khác biệt giữa bản sửa đổi của “Nửa vành”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
trans from enwiki
Thẻ: Người dùng thiếu kinh nghiệm thêm nội dung lớn Qua trình soạn thảo trực quan: Đã chuyển Liên kết định hướng
(Không có sự khác biệt)

Phiên bản lúc 21:02, ngày 3 tháng 7 năm 2022

Trong đại số trừu tượng, 'nửa vành là một cấu trúc đại số tương tự với vành nhưng không yêu cầu mỗi phần tử phải có nghịch đảo phép cộng.

Nửa vành nhiệt đới hiện đang được nghiên cứu mạnh bởi nó là cầu nối giữa các đa tạp đại số với các cấu trúc tuyến tính từng phần.[1]

Bản mẫu:Algebraic structures

Định nghĩa

Nửa vànhtập đi kèm với hai phép toán hai ngôi được gọi là phép cộng và phép nhân sao cho:[2][3][4]

  • monoid giao hoán với phần tử đơn vị :
  • monoid với phần tử đơn vị :
  • Phép nhân có tính phân phối trái và phải trên phép cộng:
  • Nhân bởi số :

Ký hiệu thường bị ẩn bị; nghĩa là, viết gọi lại thành Ngoài ra thứ tự các phép toán vẫn giữ nguyên, nghĩa là phép thực hiện trước phép ; ví dụ như

So với vành, nửa vành chỉ bỏ đi yêu cầu giá trị nghịch đảo của phép cộng; nghĩa là nó chỉ cần monoid giao hoán chứ không cần nhóm giao hoán. Nếu phép nhân của nửa vành có tính giao hoán thì nó được gọi là nửa vành giao hoán.[5]

Lý thuyết

Ta có thể trực tiếp tổng quát hóa các lý thuyết đại số) kết hợp trên vành giao hoán sang lý thuyết đại số trên nửa vành.[cần dẫn nguồn]

Một nửa vành mà mỗi phần tử lũy đẳng với phép cộng (nghĩa là với mọi ) được gọi là nửa vành lũy đẳng.,[6] Nửa vành lũy đẳng mà cũng là vành thì là vành tầm thường (vành chỉ có 1 phần tử)[note 1] Ngoài ra ta có thể định nghĩa thứ tự một phần trên nửa vành lũy đẳng bằng cách đặt khi (hay tồn tại sao cho ). giá trị tối thiểu thỏa mãn quan hệ này là nghĩa là với mọi Phép cộng và phép nhân bảo toàn thứ tự như sau thì ;

Các ứng dụng

Nửa vành nhiệt đới trên các số thực được dùng để đánh giá hiệu suất trên các hệ thống sự kiện rời rạc. Các số thực trở thành "chi phí" hoặc "thời gian đến"; Phép toán "max" tương ứng với thời gian đợi tất cả điều kiện tiên quyết của sự kiện được thỏa mãn (do đó thời gian tốn là cực đại) trong khi phép "min" tương ứng với cách chọn tối ưu ít chi phí nhất; phép + tương ứng với các tích lũy trên cùng 1 đường.

Thuật toán Floyd–Warshall tìm đường đi ngắn nhất có thể đổi thành bài tính trên đại số . Tương tự như vậy, thuật toán Viterbi tìm dãy trạng thái khả thi nhất đối với dãy quan sát trong mô hình Markov ẩn có thể đổi thành bài tính trên đại số của xác suất. Các thuật toán quy hoạch động này dựa trên tính phân phối của nửa vành tương ứng để tính một số lượng lớn (có thể lũy thừa) số các phần tử thay vì phải chạy qua từng cái một.[7][8]

Các ví dụ

Theo định nghĩa thì mọi vành đều là nửa vành. Các ví dụ nửa vành nhưng không phải vành là tập các số tự nhiên số (bao gồm 0) dưới phép cộng và phép nhân như thường.Số hữu tỉ không âm và số thực không âm cũng tạo thành nửa vành. Các nửa vành này đều giao hoán.[9][10]

Các ví dụ chung

  • Tập các ideal của 1 vành lập thành nửa vành lũy đẳng với phép nhân và cộng ideal
  • Đại số Boolean là nửa vành, vành Boolean cũng là nửa vành (bởi vì nó là vành) nhưng nó không lũy đẳng dưới phép cộng. nửa vành Boolean được định nghĩa là một nửa vành đẳng cấu với nửa vành con của đại số Boolean [9].
  • Mọi c-nửa vành cũng là nửa vành, trong đó phép cộng lũy đẳng và trên mọi tập hợp

Chú thích

  1. ^ , bởi vì vành phải có nghịch đảo phép cộng, không như nửa vành.

Tham khảo

  1. ^ Speyer, David; Sturmfels, Bernd (2009). “Tropical Mathematics”. Mathematics Magazine (bằng tiếng Anh). 82 (3): 163–173. doi:10.1080/0025570X.2009.11953615. ISSN 0025-570X. S2CID 15278805.
  2. ^ Berstel & Perrin (1985), [//books.google.com/books?id=GHJHqezwwpcC&pg=PA26&dq=%22a+semiring+K+is+a+set+equipped+with+two+operations%22 p. 26]
  3. ^ Lothaire (2005) p.211
  4. ^ Sakarovitch (2009) pp.27–28
  5. ^ Lothaire (2005) p.212
  6. ^ Ésik, Zoltán (2008). “Iteration semirings”. Trong Ito, Masami (biên tập). Developments in language theory. 12th international conference, DLT 2008, Kyoto, Japan, September 16–19, 2008. Proceedings. Lecture Notes in Computer Science. 5257. Berlin: Springer-Verlag. tr. 1–20. doi:10.1007/978-3-540-85780-8_1. ISBN 978-3-540-85779-2. Zbl 1161.68598.
  7. ^ Pair, Claude (1967), “Sur des algorithmes pour des problèmes de cheminement dans les graphes finis (On algorithms for path problems in finite graphs)”, trong Rosentiehl (biên tập), Théorie des graphes (journées internationales d'études) -- Theory of Graphs (international symposium), Rome (Italy), July 1966: Dunod (Paris) et Gordon and Breach (New York), tr. 271Quản lý CS1: địa điểm (liên kết)
  8. ^ Derniame, Jean Claude; Pair, Claude (1971), Problèmes de cheminement dans les graphes (Path Problems in Graphs), Dunod (Paris)
  9. ^ a b Guterman, Alexander E. (2008). “Rank and determinant functions for matrices over semirings”. Trong Young, Nicholas; Choi, Yemon (biên tập). Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series. 347. Cambridge University Press. tr. 1–33. ISBN 978-0-521-70564-6. ISSN 0076-0552. Zbl 1181.16042.
  10. ^ Sakarovitch (2009) p.28

Đọc thêm