Hàm số đơn điệu

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Hàm số f(x) xác định trên [a, b] được gọi là tăng (tương ứng tăng nghiêm ngặt hay đồng biến) nếu với và x1 < x2 ta có (tương ứng f(x1) < f(x2)). Tương tự được gọi là giảm (tương ứng giảm nghiêm ngặt hay nghịch biến) nếu với , x1 < x2 ta có (tương ứng f (x1) > f(x2)).

Những hàm số tăng hoặc giảm trên [a, b] được gọi là đơn điệu trong đoạn đó. Với trường hợp tăng nghiêm ngặt hoặc giảm nghiêm ngặt thì được gọi là đơn điệu nghiêm ngặt

Ví dụ: Hàm số không đơn điệu trên (-∞, +∞), mặc dù nghịch biến trong (-∞, 0] và đồng biến trong [0, +∞).

Thông thường để xác định tính chất đơn điệu của một hàm số người ta tìm đạo hàm của nó, nếu đạo hàm dương trong khoảng nào thì nó đồng biến trong khoảng đó, trong trường hợp âm thì ngược lại hàm số nghịch biến.

Tính chất[sửa | sửa mã nguồn]

Kí hiệu K là khoảng đoạn hoặc nửa khoảng. Giả sử hàm số y= f(x) xác định trên K. Ta nói :

  • Cho hàmsố y= f(x) đồng biến ( tăng ) trên K nếu với mọi cặp x1,x2 thuộc K mà x1 nhỏ hơn x1 thì f(X) nhỏ hơn f(x), tức là : x1 < x2 =) f(x1) < f(x2)
  • Hàm số y = f(x) nghịch biến (giảm) trên K nếu với mọi cặp x1,x2 thuộc K mà x1 nhỏ hơn x2 thì f(x) lớn hơn f(x), tức là: x1 < x2 =) f(x1) > f(x2)

Tham khảo[sửa | sửa mã nguồn]