Bước tới nội dung

Đặc tuyến Volt–Ampere

Bách khoa toàn thư mở Wikipedia
(Đổi hướng từ Đặc tuyến Volt-Ampere)
Đặc tuyến V–A của bốn thiết bị: một điện trởđiện trở lớn, một điện trở có điện trở nhỏ, một diode P–N, và một battery với điện trở trong khác không. Trục hoành thể hiện sự sụt áp, trục tung thể hiện cường độ dòng điện. Cả bốn đồ thị sử dụng quy ước dấu thụ động.

Trong điện tử, đặc tuyến Volt–Ampere (tiếng Anh: current–voltage characteristic), còn gọi là đặc tuyến V–A, đặc tính V–A hay đặc tuyến I–U, là mối quan hệ giữa dòng điện qua một mạch điện, thiết bị, hay vật liệu, với hiệu điện thế trên linh kiện đó. Quan hệ này thường được biểu diễn dưới dạng biểu đồ hoặc đồ thị, nên ở Việt Nam thường sử dụng đến thuật ngữ "đặc tuyến".[1]

Đặc tuyến I–U đơn giản nhất là của một điện trở thuần R, trong đó theo định luật Ohm thì thể hiện quan hệ tuyến tính giữa hiệu điện thế và dòng điện trong mạch. Vì dòng điện trong mạch tỉ lệ thuận với hiệu điện thế, đặc tuyến I–U là một đường thẳng đi qua gốc tọa độ với độ dốc dương; độ dốc của đặc tuyến bằng nghịch đảo của điện trở.

Trong điện tử

[sửa | sửa mã nguồn]
Dòng điện máng và điện áp máng–nguồn của một MOSFET với một số giá trị điện áp overdrive VGS − Vth khác nhau; ranh giới giữa vùng tuyến tính (ohmic) và bão hòa (hoạt động) là parabol màu đỏ.

Trong điện tử học, mối quan hệ giữa dòng điện một chiều (DC) qua một thiết bị điện tửhiệu điện thế DC giữa các cực của nó được gọi là đặc tuyến Volt–Ampere của thiết bị. Các kỹ sư điện tử sử dụng những biểu đồ này để xác định các tính chất cơ bản của thiết bị và mô phỏng hành vi của nó trong mạch điện.

Trong những linh kiện điện tử với nhiều hơn hai cực, ví dụ như ống chân khôngbán dẫn, quan hệ Volt–Ampere của một cặp cực đôi khi phụ thuộc vào dòng điện hoặc điện áp ở một cực khác. Điều này thường dẫn đến biểu đồ V–A phức tạp với nhiều đường cong, mỗi đường biểu diễn quan hệ V–A với một giá trị dòng điện hoặc điện áp ở cực thứ ba khác nhau.[1]

Ví dụ hình bên là đồ thị các đặc tuyến V–A cho một MOSFET biểu diễn một hàm số của điện áp máng–nguồn với các giá trị khác nhau của quá điện áp (VGS − Vth) làm tham số.

Đặc tuyến V–A của một linh kiện điện tử có thể được đo bằng curve tracer. Những tham số thường được đo đạc từ đặc tuyến V–A của thiết bị bao gồm độ hỗ dẫnđiện áp Early của một bán dẫn.

Các loại đặc tuyến V–A

[sửa | sửa mã nguồn]
Bốn phần tư của mặt phẳng I–U. Nguồn điện có đặc tuyến đi qua vùng mày đỏ.

Hình dạng đặc tuyến của một linh kiện điện tử cho biết nhiều điều về tính chất hoạt động của nó. Đặc tuyến V–A của các thiết bị khác nhau có thể được chia thành các loại:

Ngược lại, các linh kiện với đặc tuyến V–A đi qua góc phần tư thứ hai và thứ tư là những linh kiện chủ động, nguồn điện, có khả năng tạo ra điện năng. Các ví dụ bao gồm pinmáy phát điện. Khi hoạt động trong góc phần tư thứ hai hay thứ tư, dòng điện chạy trong thiết bị từ cực âm sang cực dương, ngược lại lực điện trường, do đó các điện tích tích lũy thế năng. Do đó thiết bị đang biến một dạng năng lượng khác thành điện năng.
  • Tuyến tính và phi tuyến: Một đường thẳng đi qua gốc tọa độ biểu diễn một thành phần tuyến tính, còn một đường cong biểu diễn một linh kiện phi tuyến tính. Ví dụ, điện trở, tụ điện và cuộn cảm là tuyến tính, còn diodebán dẫn là phi tuyến tính. Một đặc tuyến V–A thẳng đi qua gốc tọa độ với độ dốc dương biểu diễn một điện trở tuyến tính hay ohmic, loại điện trở phổ biến nhất trong mạch điện. Nó tuân theo định luật Ohm; dòng điện tỷ lệ thuận với điện áp trên một khoảng lớn. Điện trở khi ấy bằng nghịch đảo của độ dốc đặc tuyến và là hằng số. Một đặc tuyến V–A cong biểu diễn một điện trở biến thiên, như là một diode. Trong trường hợp này điện trở thay đổi tùy theo điện áp hay dòng điện.
  • Điện trở âm và điện trở dương: Một đặc tuyến V–A không đơn điệu (có chỗ lồi chỗ lõm) biểu diễn một thiết bị với điện trở âm. Những vùng đặc tuyến giảm (độ dốc âm) thể hiện những vùng hoạt động với điện trở vi sai âm, trong khi những vùng tăng (độ dốc dương) thể hiện điện trở vi sai dương. Thiết bị với điện trở âm có thể dùng để làm bộ khuếch đạimạch dao động. Các linh kiện có điện trở âm bao gồm diode tunneldiode Gunn.
  • Tính trễ và tính duy nhất: Thiết bị có tính trễ, tức quan hệ V–A không chỉ phụ thuộc vào đầu vào hiện tại mà còn phụ thuộc vào lịch sử những đầu vào trước đó, có đặc tuyến V–A gồm những vòng lặp kín. Mỗi nhánh của vòng lặp được đánh dấu bằng một mũi tên. Những thiết bị có tính trễ bao gồm tụ điệnbiến áp lõi sắt, thyristor như SCR hay DIAC, và ống phóng điện khí như đèn neon.

Trong điện sinh lý

[sửa | sửa mã nguồn]
Thành phần ion kali và natri xấp xỉ của đặc tuyến I–U "toàn tế bào" của một nơron.

Tuy đặc tuyến V–A có thể áp dụng cho bất kỳ hệ thống điện tử nào, chúng đặc biệt được sử dụng rộng rãi trong ngành điện sinh học, nhất là điện sinh lý. Khi ấy, điện áp chỉ điện áp hai bên một màng sinh học, hay điện thế màng, và dòng điện là dòng chảy ion tích điện qua các kênh trong màng. Dòng điẹn được xác định bằng độ dẫn điện của những kênh này.

Trong trường hợp dòng điện ion qua các màng sinh học, dòng điện được đo từ trong ra ngoài. Nghĩa là dòng điện dương, hay "dòng điện hướng ngoại", tương ứng với ion dương đi từ trong màng ra ngoài màng, hoặc ion âm đi từ ngoài màng vào trong màng. Tương tự, dòng điện âm còn được gọi là "dòng điện hướng nội" và tương ứng với ion dương đi từ ngoài màng vào trong màng, hoặc ion âm đi từ trong màng ra ngoài màng.

Hình bên vẽ đặc tuyến I–U điển hình của những màng sinh học dễ kích thích (như là sợi trục nơron). Đường màu lam thể hiện quan hệ I–U cho ion kali; nó là đường thẳng, cho thấy không có sự phụ thuộc vào điện áp của kênh ion kali. Đường màu vàng thể hiện quan hệ I–U cho ion natri; nó không phải là đường thẳng, cho thấy kênh ion natri phụ thuộc vào điện áp. Đường màu lục thể hiện quan hệ I–U từ tổng của các kênh ion natri và kali; gần giống với quan hệ giữa dòng điện và điện thế màng của một tế bào chứa hai loại kênh ion này.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ a b H. J. van der Bijl (1919). “Theory and Operating Characteristics of the Themionic Amplifier”. Proceedings of the IRE. Institute of Radio Engineers. 7 (2): 97–126. doi:10.1109/JRPROC.1919.217425.