Định lý lớn Fermat

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Phương trình

Định lý cuối của Fermat (hay còn gọi là Định lý lớn Fermat) là một trong những định lý nổi tiếng trong lịch sử toán học. Định lý này phát biểu như sau:

Không tồn tại các nghiệm nguyên khác không x, y, và z thoả mãn xn + yn = zn trong đó n là một số nguyên lớn hơn 2.

Định lý này đã làm hao mòn không biết bao bộ óc vĩ đại của các nhà toán học lừng danh trong gần 4 thế kỉ. Cuối cùng nó được chứng minh bởi Andrew Wiles năm 1993 sau gần 8 năm ròng nghiên cứu, phát triển chứng minh các giả thiết có liên quan.

Giả thiết Fermat[sửa | sửa mã nguồn]

Fermat viết lại trên lề một cuốn sách rằng ông có cách giải rất hay, nhưng vì lề sách bé quá không đủ chỗ để viết.

Bài toán II.8 trong Arithmetica của Diophantus, với chú giải của Fermat và sau đó trở thành định lý Fermat cuối cùng (ấn bản 1670)

Lịch sử chứng minh định lý lớn Fermat[sửa | sửa mã nguồn]

Cho tới đầu thế kỷ 20 các nhà toán học chỉ chứng minh định lý này là dúng với n=3, 4, 5, 7 và các bội số của nó. Nhà toán học người Đức Ernst Kummer đã chứng minh định lý này là đúng với mọi số nguyên tố tới 100 (trừ 3 Số nguyên tố phi chính quy37, 59, 67).

Quá trình giải của Andrew Wiles[sửa | sửa mã nguồn]

  • Tháng 5 năm 1993, Wiles khoe với vợ của mình là đã giải thành công.
  • Tháng 6 năm 1993, "Elliptic Curves and Modular Forms", Wiles lần đầu tiên công bố là ông đã giải được Định lý lớn Fermat.
  • Trong tháng 7 và tháng 8 năm 1993, Nick Katz, đồng nghiệp của Wiles tại Đại học Princeton, trao đổi email với ông về những điểm chưa hiểu rõ, trong đó nhắc rằng trong chứng minh của ông có 1 sai lầm căn bản.
  • Tháng 9 năm 1993, Wiles nhận ra chỗ sai và cố gắng sửa. Trong ngày sinh nhật của vợ ông, ngày 6 tháng 10, bà nói chỉ cần quà sinh nhật là một chứng minh đúng, thế nhưng, dù đã cố gắng hết sức, Wiles vẫn không làm được.
  • Tháng 11 năm 1993, ông gởi email công bố là có trục trặc trong phần của chứng minh đó của mình.
  • Sau nhiều tháng thất bại trong việc tìm hướng giải quyết, Wiles sắp chịu thua. Trong tuyệt vọng, ông yêu cầu giúp đỡ. Richard Taylor, một sinh viên cũ của ông, đã tới Princeton cùng nghiên cứu với ông.
  • Ba tháng đầu 1994, ông cùng Taylor tìm mọi cách sửa chữa vấn đề nhưng vô hiệu.
  • Tháng 9 năm 1994, ông quay lại nghiên cứu một vấn đề căn bản mà chứng minh của ông được xây dựng dựa trên đó.
  • Ngày 19 tháng 9 năm 1994 phát hiện cách sửa chữa chỗ trục trặc đơn giản và đẹp, dựa trên một cố gắng chứng minh đã làm 3 năm trước. Sau khi coi lại cẩn thận, ông mừng rỡ nói với phu nhân là đã làm được.
  • Tháng 5 năm 1995 đăng lời giải trên Annals of Mathematics (Đại học Princeton).
  • Tháng 8 năm 1995 hội thảo ở Đại học Boston, giới toán học công nhận chứng minh là đúng.

Helen G. Grundman, giáo sư toán trường Bryn Mawr College, đánh giá tình hình của cách chứng minh đó như sau:

"Tôi nghĩ là ta có thể nói, vâng, các nhà toán học hiện nay đã bằng lòng với cách chứng minh Định lý lớn Fermat đó. Tuy nhiên, một số sẽ cho là chứng minh đó của một mình Wiles mà thôi. Thật ra chứng minh đó là công trình của nhiều người. Wiles đã có đóng góp đáng kể và là người kết hợp các công trình lại với nhau thành cái mà ông đã nghĩ là một cách chứng minh. Mặc dù cố gắng khởi đầu của ông được phát hiện sau đó là có sai lầm, Wiles và người phụ tá Richard Taylor đã sửa lại được, và nay đó là cái mà ta tin là cách chứng minh đúng Định lý lớn Fermat."
"Chứng minh mà ta biết hiện nay đòi hỏi sự phát triển của cả một lãnh vực toán học chưa đuợc biết tới vào thời Fermat. Bản thân định lý được phát biểu rất dễ dàng và vì vậy xem ra có vẻ đơn giản một cách giả tạo; bạn không cần biết rất nhiều về toán để hiểu bài toán. Tuy nhiên, để rồi nhận ra rằng, theo kiến thức tốt nhất của bạn, cần phải biết rất nhiều về toán mới có thể giải được nó. Vẫn là một câu hỏi chưa có lời đáp rằng liệu có hay không một cách chứng minh Định lý lớn Fermat mà chỉ liên quan tới toán học và các phương pháp đã có vào thời Fermat. Chúng ta không có cách nào trả lời trừ phi ai đó tìm ra một chứng minh như vậy."

Giả thuyết tổng quát[sửa | sửa mã nguồn]

Phương trình:

  • x_1^n + x_2^n +... +x_k^n = z^n với n \ge 3, k\ge 2.

hoặc tổng quát hơn:

  • x_1^{n_1} + x_2^{n_2} +... +x_k^{n_k} = z^n với n_i\ge 3, k\ge 2, n>k\,\!.

không có nghiệm nguyên khác không.

Giả thuyết tổng quát này hiện vẫn chưa được chứng minh, kiểm chứng.

Xem thêm[sửa | sửa mã nguồn]

Đọc thêm[sửa | sửa mã nguồn]

  • Simon Singh, Định Lý Cuối Cùng Của Fermat, Phạm Văn Thiều và Phạm Việt Hưng dịch, Thành phố Hồ Chí Minh:Nxb Trẻ
  • Amir D. Aczel, Câu chuyện hấp dẫn về bài toán Phécma, Trần Văn Nhung, Đỗ Trung Hậu, Nguyễn Kim Chi dịch, Hà Nội:Nxb Giáo dục, 2000
Tiếng Anh:
  • Amir D. Aczel, Fermat's Last Theorem, New York/London:Four Walls Eight Windows

Tham khảo[sửa | sửa mã nguồn]

Liên kết ngoài[sửa | sửa mã nguồn]