Độc lập tuyến tính

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Trong đại số tuyến tính, độc lập tuyến tính là một tính chất thể hiện mối liên hệ giữa các vectơ.

Độc lập tuyến tính và phụ thuộc tuyến tính[sửa | sửa mã nguồn]

  • Một hệ các vectơ {v1,...,vn} trong không gian vectơ V được gọi là phụ thuộc tuyến tính, nếu tồn tại các số: k1,..., kn không đồng thời bằng không sao cho:
k1 v1 +... + kn vn = 0.
  • hệ các vectơ là độc lập tuyến tính khi và chỉ khi phương trình vectơ:
k1 v1 +... + kn vn = 0

chỉ có nghiệm duy nhất: k1 = k2 =... = kn = 0

Ý nghĩa hình học[sửa | sửa mã nguồn]

  • Trong không gian các vectơ trên mặt phẳng, hệ gồm hai vectơ là độc lập tuyến tính khi và chỉ khi chúng không cùng phương.
  • Trong không gian các vectơ hình học 3 chiều, hệ ba vectơ là độc lập tuyến tính khi và chỉ khi chúng không đồng phẳng.

Thí dụ[sửa | sửa mã nguồn]

  • Hai vectơ (1,2,3,4) và (-3,-6,-9,5) là độc lập tuyến tính.
  • (1,2) và (-2,-4) không độc lập tuyến tính vì tồn tại λ1 = 1 và λ2 = 2 thỏa mãn λ1(-2,-4) + λ2(1,2) = 0.

Độc lập tuyến tính trong không gian Rn[sửa | sửa mã nguồn]

  • Trong không gian Rn một hệ gồm nhiều hơn n vectơ {v1,...,vm} luôn là phụ thuộc tuyến tính.
  • Nếu hệ các vectơ {v1,...,vm} là độc lập tuyến tính trong không gian Rn, thì tập hợp tất cả các vectơ có dạng:
k1 v1 +... + km vm
là một không gian con đẳng cấu với Rm.
  • Một hệ n vectơ {v1,...,vn} là độc lập tuyến tính trong không gian Rn, khi và chỉ khí ma trận lập thành từ các tọa độ của chúng có định thức khác không.

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]