Đường cao (tam giác)

Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướng Bước tới tìm kiếm
Ba đường cao của một tam giác đồng quy tại trực tâm

Trong hình học, đường cao của một tam giácđoạn thẳng kẻ từ một đỉnhvuông góc với cạnh đối diện. Cạnh đối diện này được gọi là đáy ứng với đường cao. Giao điểm của đường cao và đáy được gọi là chân của đường cao. Độ dài của đường cao là khoảng cách giữa đỉnh và đáy.

Độ dài đường cao được sử dụng để tính diện tích của một tam giác: diện tích tam giác bằng nửa tích đường cao nhân với đáy. Vì vậy, đường cao dài nhất vuông góc với cạnh ngắn nhất của tam giác. Các đường cao cũng liên quan đến các cạnh của tam giác qua các hàm lượng giác.

Độ dài đường cao thường được ký hiệu là chữ h (viết tắt cho từ tiếng Anh height; có nghĩa là "chiều cao") và thường viết xuống dưới là chữ đại diện cho độ dài của cạnh đường cao đó cắt. Ví dụ, đường cao vuông góc cạnh c sẽ được ký hiệu là .

Trong một tam giác cân (tam giác có hai cạnh bằng nhau), trung điểm của cạnh đáy là chân đường cao hạ từ đỉnh. Ngoài ra, đường cao có đáy là cạnh đáy chính là đường phân giác của góc ở đỉnh.

Trong một tam giác vuông (tam giác có một góc bằng 90°), đường cao có đáy là một cạnh góc vuông trùng với cạnh góc vuông còn lại. Đường cao với đáy là cạnh huyền chia cạnh huyền thành hai đoạn có độ dài lần lượt là pq, ta có quan hệ:

(định lý trung bình nhân)

Độ dài đường cao[sửa | sửa mã nguồn]

Có nhiều cách để tính độ dài đường cao, cách đơn giản để tính độ dài đường cao khi có độ dài ba cạnh là dùng công thức Heron.

Với a, b, c là độ dài các cạnh; p là nửa chu vi ta có:

Qua các hàm số lượng giác, có thể dùng đường cao để xác định độ dài cạnh.

Trực tâm[sửa | sửa mã nguồn]

Ba đường cao của tam giác đồng quy tại một điểm, gọi là trực tâm của tam giác.

Ta có tính chất: "Khoảng cách từ một đỉnh tới trực tâm của một tam giác bằng hai lần khoảng cách từ tâm đường tròn ngoại tiếp tam giác đó đến trung điểm cạnh nối hai đỉnh còn lại".

Trực tâm của tam giác vuông trùng với đỉnh góc vuông của nó.

Tính chất:

Trong tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến, đường phân giác, đường cao xuất phát từ đỉnh đối diện của cạnh đó.

Trực tâm của tam giác nhọn ABC trùng với tâm đường tròn nội tiếp tam giác tạo bởi ba đỉnh là chân ba đường cao từ các đỉnh A, B, C đến các cạnh BC, AC, AB tương ứng.

Định lý Carnot: Đường cao tam giác ứng với một đỉnh cắt đường tròn ngoại tiếp tại điểm thứ hai là đối xứng của trực tâm qua cạnh tương ứng.

Tham khảo[sửa | sửa mã nguồn]

Sách tham khảo[sửa | sửa mã nguồn]

  • Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, p. 20, 1928.
  • Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.
  • Bogomolny, A. "The Altitudes." http://www.cut-the-knot.org/triangle/altitudes.html.
  • Coxeter, H. S. M. and Greitzer, S. L. "More on the Altitude and Orthocentric Triangle." §2.4 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 9 and 36-40, 1967.