Tam giác

Bách khoa toàn thư mở Wikipedia
Jump to navigation Jump to search
Xem các nghĩa khác của tam giác tại bài Tam giác (định hướng).

Tam giác hay hình tam giác là một loại hình cơ bản trong hình học: hình hai chiều phẳng có ba đỉnh là ba điểm không thẳng hàng và ba cạnh là ba đoạn thẳng nối các đỉnh với nhau. Tam giác là đa giác có số cạnh ít nhất (3 cạnh). Tam giác luôn luôn là một đa giác đơn, đa giác lồi (các góc trong luôn nhỏ hơn 180o)

Các yếu tố trong một tam giác[sửa | sửa mã nguồn]

Góc trong C, góc đối C'

Các góc trong một tam giác được gọi là góc trong. Các góc kề bù với góc trong được gọi là góc ngoài. Góc ngoài thì bằng tổng các góc trong không kề bù với nó. Mỗi tam giác chỉ có 3 góc trong và 6 góc ngoài.

Trực tâm H của tam giác ABC

Đường cao là một đoạn thẳng đi qua một đỉnh và vuông góc với cạnh đối diện của đỉnh đó. Mỗi tam giác chỉ có ba đường cao. Ba đường cao của một tam giác đồng quy tại một điểm, điểm này được gọi là trực tâm của tam giác.

Trọng tâm của tam giác

Đường trung tuyến là một đoạn thẳng nối từ đỉnh đến trung điểm của cạnh đối diện. Một tam giác chỉ có ba đường trung tuyến. Ba đường trung tuyến của một tam giác đồng quy tại một điểm, điểm này được gọi là trọng tâm của tam giác. Khoảng cách từ trọng tâm đến mỗi đỉnh bằng 2/3 cả trung tuyến tương ứng với đỉnh đó. Trên một mặt phẳng, đường thẳng đi qua bất kỳ một đỉnh và trọng tâm của tam giác đều thì chia tam giác đó thành hai tam giác có diện tích bằng nhau.

Đường tròn ngoại tiếp tam giác

Đường trung trực của một tam giác là đường vuông góc với một cạnh của tam giác đó tại trung điểm. Mỗi tam giác chỉ có ba đường trung trực. Ba đường trung trực của một tam giác đồng quy tại một điểm, điểm đó có tên gọi là tâm của đường tròn ngoại tiếp tam giác. Tâm của đường tròn ngoại tiếp tam giác cách đều ba đỉnh của tam giác đó.

Đường phân giác là đoạn thẳng nối từ đỉnh đến cạnh đối diện và chia góc ở đỉnh làm 2 phần có số đo góc bằng nhau. Mỗi tam giác chỉ có ba đường phân giác. Ba đường này đồng quy tại một điểm. Điểm đó có tên gọi là tâm của đường tròn nội tiếp tam giác. Khoảng cách từ tâm của đường tròn nội tiếp tam giác tới các cạnh là bằng nhau. Mỗi đường phân giác đi qua một đỉnh sẽ chia cạnh đối diện của nó thành hai đoạn tỉ lệ với hai cạnh còn lại của tam giác đó theo mỗi bên.

Đường trung bìnhđoạn thẳng nối trung điểm hai cạnh của tam giác; một tam giác có ba đường trung bình. Đường trung bình của tam giác thì song song với cạnh thứ ba và có độ dài bằng một nửa độ dài cạnh thứ ba.

Theo định lý Ơle: Trong một tam giác: trực tâm, trọng tâm, tâm của đường tròn ngoại tiếp tam giác cùng thuộc một đường thẳng, trọng tâm sẽ nằm giữa trực tâm và tâm của đường tròn ngoại tiếp tam giác, từ trực tâm đến tâm của đường tròn ngoại tiếp tam giác sẽ bằng 3 lần từ trực tâm đến  trọng tâm. Đường thẳng chứa ba điểm đó được gọi là đường thẳng Ơle.

Đối với các đường đồng quy của một tam giác (đường cao, đường trung tuyến, đường trung trực, đường phân giác), ta có thể nhận xét như sau:
  1. Trọng tâmtâm đường tròn nội tiếp luôn luôn nằm trong tam giác.
  2. Trực tâm nằm ngoài tam giác khi đó là tam giác tù, trùng với đỉnh góc vuông khi đó là tam giác vuông, nằm bên trong khi đó là tam giác nhọn.
  3. Tâm của đường tròn ngoại tiếp tam giác nằm ngoài tam giác khi đó là tam giác tù, trùng với cạnh ( là trung điểm của cạnh huyền) khi đó là tam giác vuông, nằm bên trong trong tam giác khi đó là tam giác nhọn.
  4. Trong một tam giác cân: trực tâm, trọng tâm, tâm của đường tròn ngoại tiếp tam giác, tâm của đường tròn nội tiếp tam giác sẽ thẳng hàng với nhau. Đường thẳng đó chính là đường trung tuyến, đồng thời cũng là đường phân giác, đường trung trực và đường cao ứng với cạnh đáy.
  5. Trong một tam giác đều: trực tâm, trọng tâm, tâm của đường tròn ngoại tiếp tam giác, tâm của đường tròn nội tiếp tam giác trùng nhau. Các cặp đường trung tuyến, đường phân giác, đường trung trực, đường cao cũng trùng nhau. Đường trung bình của tam giác là đoạn thẳng nối hai trung điểm của hai cạnh trong một tam giác. Đường trung bình có tính chất: song song với cạnh thứ ba và bằng một nửa cạnh thứ ba.

Sự bằng nhau giữa các tam giác[sửa | sửa mã nguồn]

Hai tam giác được gọi là bằng nhau khi chúng có thể đặt trùng khít lên nhau sau một số phép tịnh tiến, quay và đối xứng. Nói cách khác hai tam giác được gọi là bằng nhau nếu chúng có các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau. Hai tam giác bằng nhau khi và chỉ khi thỏa mãn một trong bảy điều kiện sau đây:

  1. Hai tam giác có ba cặp cạnh tương ứng bằng nhau thì bằng nhau (cạnh-cạnh-cạnh).
  2. Hai tam giác có hai cặp cạnh bất kỳ tương ứng bằng nhau và cặp góc xen giữa các cạnh đó bằng nhau thì bằng nhau (cạnh-góc-cạnh).
  3. Hai tam giác có một cặp cạnh bất kỳ bằng nhau và hai cặp góc kề với cặp cạnh ấy bằng nhau thì bằng nhau (góc-cạnh-góc). Hệ quả: Hai tam giác có hai cặp góc bất kỳ và một cặp cạnh bất kỳ bằng nhau thì chúng bằng nhau (hai góc + một cạnh)
  4. Hai tam giác đều hai đường tròn nội tiếp và ngoại tiếp đồng tâm với nhau.
  5. Hai tam giác có hai cặp cạnh bằng nhau và một cặp đường cao bằng nhau thì chúng bằng nhau.
  6. Hai tam giác có hai cặp cạnh bất kỳ tương ứng và một cặp góc có vị trí tương ứng bằng nhau thì chúng bằng nhau.
  7. Hai tam giác có hai cặp góc bất kỳ và một cặp cạnh bất kỳ bằng nhau thì chúng bằng nhau (hai góc + một cạnh) Quan hệ bằng nhau giữa các tam giác là trường hợp đặc biệt của quan hệ đồng dạng giữa các tam giác (khi các cạnh tỷ lệ nhau theo hệ số tỷ lệ là 1)

Sự đồng dạng giữa các tam giác[sửa | sửa mã nguồn]

Hai tam giác được gọi là đồng dạng nếu một trong chúng bằng với một tam giác nhận được từ tam giác kia sau một phép vị tự.Các điều kiện cần và đủ để hai tam giác đồng dạng:

  1. Hai tam giác có ba cặp cạnh tương ứng tỷ lệ với nhau thì đồng dạng. (cạnh-cạnh-cạnh).
  2. Hai tam giác có hai cặp góc tương ứng bằng nhau thì đồng dạng. (góc-góc).
  3. Hai tam giác có hai cặp cạnh tương ứng tỷ lệ với góc xen giữa hai cặp cạnh ấy bằng nhau thì đồng dạng. (cạnh-góc-cạnh).

Các tính chất khác:

  1. Tỉ số hai đường phân giác, hai đường cao, hai đường trung tuyến, hai bán kính nội tiếp và ngoại tiếp, hai chu vi tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.
  2. Tỉ số diện tích của hai tam giác đồng dạng thì bằng bình phương tỉ số đồng dạng.

Phân loại tam giác[sửa | sửa mã nguồn]

Trong hình học Euclid, thuật ngữ "tam giác" thường được hiểu là tam giác nằm trên một mặt phẳng. Ngoài ra còn có tam giác cầu trong hình học cầu, tam giác hyperbol trong hình học hyperbol. Tam giác phẳng có một số dạng đặc biệt, được xét theo tính chất các cạnh và các góc của nó:

  • Trong tam giác thường, các cạnh có độ dài khác nhau, số đo góc trong cũng khác nhau. Tam giác thường cũng có thể bao gồm các trường hợp đặc biệt của tam giác.
  • Tam giác cân là tam giác có hai cạnh bất kỳ độ dài bằng nhau, hai cạnh này được gọi là hai cạnh bên. Trong một tam giác cân, hai cạnh bên chung nhau đỉnh nào thì tam giác sẽ cân tại đỉnh đó. Góc ở tạo bởi đỉnh đó được gọi là góc ở đỉnh, hai góc còn lại gọi là góc ở đáy. Tính chất: trong một tam giác cân, hai góc ở đáy bằng nhau.
  • Tam giác đều là trường hợp đặc biệt của tam giác cân có cả ba cạnh bằng nhau. Tính chất: trong một tam giác đều, ba góc trong bằng nhau và có số đo góc là 60o.
Tam giác thường Tam giác đều Tam giác cân
Một tam giác thuờng Một tam giác đều Một tam giác cân
  • Tam giác vuông là tam giác có một góc bằng 90o (là góc vuông). Trong một tam giác vuông, cạnh đối diện với góc vuông gọi là cạnh huyền, là cạnh lớn nhất trong tam giác đó. Hai cạnh còn lại được gọi là cạnh góc vuông của tam giác vuông. Định lý Pytago là định lý nổi tiếng đối với hình tam giác vuông, mang tên nhà toán học lỗi lạc Pytago.
  • Tam giác tù là tam giác có một góc trong lớn hơn lớn hơn 90o (một góc tù) hay có một góc ngoài bé hơn 90o (một góc nhọn).
  • Tam giác nhọn là tam giác có ba góc trong đều nhỏ hơn 90o (ba góc nhọn) hay có sáu góc ngoài lớn hơn 90o (sáu góc tù)
Tam giác vuông Tam giác tù Tam giác nhọn
Tam giác vuông Tam giác tù Tam giác nhọn
  • Một số tam giác khác là trường hợp đặc biệt trong các phân lớp kể trên. Ví dụ: Tam giác vuông cân vừa là tam giác vuông cũng là tam giác cân.
Tam giác vuông cân

Một số tính chất của tam giác (trong hình học Euclide)[sửa | sửa mã nguồn]

  1. Tổng các góc trong của một tam giác bằng 180o (Định lý tổng ba góc trong của một tam giác)
  2. Độ dài mỗi cạnh lớn hơn hiệu độ dài hai cạnh kia và nhỏ hơn tổng độ dài của chúng. (Bất đẳng thức tam giác)
  3. Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn. Ngược lại, góc đối diện với cạnh lớn hơn là góc lớn hơn.( Quan hệ giữa cạnh và góc đối diện trong tam giác).
  4. Ba đường cao của tam giác cắt nhau tại một điểm được gọi là trực tâm của tam giác. (Đồng quy tam giác)
  5. Ba đường trung tuyến của tam giác cắt nhau tại một điểm được gọi là trọng tâm của tam giác. Đường trung tuyến của tam giác chia tam giác thành hai phần có diện tích bằng nhau. (Đồng quy tam giác)
  6. Ba đường trung trực của tam giác cắt nhau tại một điểm là tâm đường tròn ngoại tiếp của tam giác. (Đồng quy tam giác)
  7. Ba đường phân giác trong của tam giác cắt nhau tại một điểm là tâm đường tròn nội tiếp của tam giác. (Đồng quy tam giác)
  8. Định lý hàm số cosin: Trong một tam giác, bình phương độ dài một cạnh bằng tổng bình phương độ dài hai canh còn lại trừ đi hai lần tích của độ dài hai cạnh ấy với cosin của góc xen giữa hai cạnh đó.
  9. Định lý hàm số sin: Trong một tam giác tỷ lệ giữa độ dài của mỗi cạnh với sin của góc đối diện là như nhau cho cả ba cạnh.
  • Trong hình học phi Euclide thì một tam giác có thể có tổng ba góc phụ thuộc vào kích thước của tam giác, khi kích thước tam giác gia tăng thì tổng đó tiến tới giá trị là 0 và có diện tích là vô hạn.

Các công thức tính diện tích tam giác[sửa | sửa mã nguồn]

Tính diện tích tam giác là một bài toán sơ cấp thường gặp trong hình học sơ cấp

Sử dụng hình học[sửa | sửa mã nguồn]

Diện tích S bằng S = ½bh, trong đó b là độ dài của một cạnh bất kỳ của tam giác (thường gọi là đáy) và h là độ dài đường cao hạ từ đỉnh đối diện xuống cạnh ấy.

Có thể giải thích công thức này bằng cách dùng diện tích hình chữ nhật như sau:

Diện tích tam giác bằng một nửa diện tích hình bình hành, diện tích hình bình hành bằng diện tích một hình chữ nhật.

Từ một tam giác (màu xanh lục), ta sẽ sao một tam giác bằng nó,(màu xanh lam), quay góc 180°, và ghép chúng thành hình bình hành. Cắt một phần của hình bình hành, ghép lại thành hình chữ nhật. Vì diện tích hình chữ nhật là bh, nên diện tích tam giác là ½bh.

Nói cách khác, diện tích tam giác bằng độ dài cạnh đáy nhân với chiều cao chia 2:

Đặc biệt đối với tam giác vuông thì diện tích sẽ tính là một nửa tích hai cạnh góc vuông

Dùng vectơ[sửa | sửa mã nguồn]

Diện tích hình bình hành là tích có hướng của hai vectơ.

Nếu tứ giác ABDC là hình bình hành thì diện tích của nó được tính bởi công thức:

trong đó tích có hướng của hai vectơ .

Diện tích tam giác ABC bằng một nửa diện tích của hình bình hành ABDC nên:

Dùng lượng giác[sửa | sửa mã nguồn]

Sử dụng lượng giác để tính diện tích tam giác.
nên ta có:

Dùng tọa độ[sửa | sửa mã nguồn]

Nếu đỉnh A đặt ở gốc tọa độ (0, 0) của hệ tọa độ Descartes và tọa độ của hai đỉnh kia là B = (xB, yB) và C = (xC, yC), thì diện tích S của tam giác ABC bằng một nửa của giá trị tuyệt đối của định thức

Trong trường hợp tổng quát, ta có:

Trong không gian ba chiều, diện tích của tam giác cho bởi {A = (xAyAzA), B = (xByBzB) và C = (xCyCzC)} là tổng 'Pythagor' của các diện tích các hình chiếu của chúng trên các mặt phẳng tọa độ (nghĩa là x=0, y=0 and z=0):

Dùng công thức Heron[sửa | sửa mã nguồn]

Cũng có thể tính diện tích tam giác S theo Công thức Heron

trong đó là nửa chu vi của tam giác.

Những nguyên tắc cơ bản[sửa | sửa mã nguồn]

Euclid (Ơ-clit) đã trình bày các nguyên tắc cơ bản về tam giác trong tập 1-4 tác phẩm Cơ sở (Elements) của ông, viết khoảng năm 300 TCN.

Tam giác là một đa giácđơn hình bậc 2 (xem đa diện).

Hai tam giác là đồng dạng nếu có thể khai triển (co hay giãn) tam giác này theo cùng một tỷ lệ để có tam giác kia. Trường hợp này, độ dài của những bên đồng vị có tỷ lệ bằng nhau. Tức là nếu cạnh dài nhất trong một tam giác gấp đôi cạnh dài nhất của tam giác đồng dạng, thì cạnh ngắn nhất của nó cũng gấp đôi cạnh ngắn nhất của tam giác kia, và đường trung tuyến của tam giác đó cũng sẽ phải gấp đôi đường tương ứng của tam giác kia. Hơn nữa, tỷ lệ cạnh dài trên cạnh ngắn của một tam giác sẽ phải bằng tỷ lệ cạnh dài trên cạnh ngắn của tam giác kia. Điều quan trọng là những góc đồng vị phải bằng nhau để hai tam giác được đồng dạng nhau. Việc này cũng xảy ra nếu một tam giác có một cạnh chung với tam giác kia, và những cạnh đối với nó thì bằng nhau.

Hàm lượng giác sincosin có thể hiểu được khi dùng tam giác vuông và khái niệm đồng dạng. Đó là hai hàm của góc được nghiên cứu bởi lượng giác học.

Những định lý nổi tiếng được áp dụng trong tam giác[sửa | sửa mã nguồn]

Một số định lý nổi tiếng có liên quan đến tam giác là:

  1. Định lý Pythagoras (Py-ta-go) : Trong một tam giác vuông, bình phương cạnh huyền bằng tổng bình phương của hai cạnh góc vuông. Được viết bởi công thức: a2 = b2 + c2
  2. Định lý Apollonius (A-pô-lô-nê-ốt) : Với một tam giác ABC, và AD là đường trung tuyến ta có: AB2 + AC2 = 2(AD2 +BD2)
  3. Định lý Stewart (Se-át) : Gọi a, b, và c là độ dài các cạnh của một tam giác. Gọi d là độ dài của đoạn thẳng nối từ một đỉnh của tam giác với điểm nằm trên cạnh (ở đây là cạnh có độ dài là a) đối diện với đỉnh đó. Đoạn thẳng này chia cạnh a thành hai đoạn có độ dài m và n, định lý Stewart nói rằng: b2m + c2n = a(d2 +mn)
  4. Định lý Thales (Ta-lét): Nếu có một đường thẳng song song với một cạnh bất kỳ của tam giác và cắt hai cạnh còn lại thì nó sẽ phân chia ra ở trên hai cạnh đó có những đoạn thẳng tương ứng tỉ lệ với nhau.

Xem thêm[sửa | sửa mã nguồn]