Bước tới nội dung
Trình đơn chính
Trình đơn chính
chuyển sang thanh bên
ẩn
Điều hướng
Trang Chính
Nội dung chọn lọc
Bài viết ngẫu nhiên
Thay đổi gần đây
Báo lỗi nội dung
Trang đặc biệt
Tương tác
Hướng dẫn
Giới thiệu Wikipedia
Cộng đồng
Thảo luận chung
Giúp sử dụng
Liên lạc
Tải lên tập tin
Tìm kiếm
Tìm kiếm
Giao diện
Quyên góp
Tạo tài khoản
Đăng nhập
Công cụ cá nhân
Quyên góp
Tạo tài khoản
Đăng nhập
Trang dành cho người dùng chưa đăng nhập
tìm hiểu thêm
Đóng góp
Thảo luận cho địa chỉ IP này
Nội dung
chuyển sang thanh bên
ẩn
Đầu
1
Xem thêm
2
Tham khảo
3
Liên kết ngoài
Đóng mở mục lục
Danh sách tích phân với hàm mũ
35 ngôn ngữ
العربية
Bahasa Indonesia
Bosanski
Български
Català
Чӑвашла
Čeština
Ελληνικά
English
Español
Euskara
فارسی
Français
Galego
한국어
Հայերեն
Hrvatski
Italiano
Magyar
Македонски
Nederlands
日本語
Oʻzbekcha / ўзбекча
ភាសាខ្មែរ
Português
Română
Русский
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
தமிழ்
Türkçe
Українська
中文
Sửa liên kết
Bài viết
Thảo luận
Tiếng Việt
Đọc
Sửa đổi
Sửa mã nguồn
Xem lịch sử
Công cụ
Công cụ
chuyển sang thanh bên
ẩn
Tác vụ
Đọc
Sửa đổi
Sửa mã nguồn
Xem lịch sử
Chung
Các liên kết đến đây
Thay đổi liên quan
Liên kết thường trực
Thông tin trang
Trích dẫn trang này
Lấy URL ngắn gọn
Tải mã QR
In và xuất
Tạo một quyển sách
Tải dưới dạng PDF
Bản để in ra
Tại dự án khác
Khoản mục Wikidata
Giao diện
chuyển sang thanh bên
ẩn
Bách khoa toàn thư mở Wikipedia
Dưới đây là
danh sách các
tích phân
với
hàm mũ
.
∫
e
c
x
d
x
=
1
c
e
c
x
{\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}}
∫
a
c
x
d
x
=
1
c
ln
a
a
c
x
(
a
>
0
,
a
≠
1
)
{\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(}}a>0,{\mbox{ }}a\neq 1{\mbox{)}}}
∫
x
e
c
x
d
x
=
e
c
x
c
2
(
c
x
−
1
)
{\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)}
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
{\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
{\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx}
∫
e
c
x
d
x
x
=
ln
|
x
|
+
∑
i
=
1
∞
(
c
x
)
i
i
⋅
i
!
{\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}}
∫
e
c
x
d
x
x
n
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(
n
≠
1
)
{\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,dx\right)\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
∫
e
c
x
ln
x
d
x
=
1
c
e
c
x
ln
|
x
|
−
Ei
(
c
x
)
{\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
∫
e
c
x
sin
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
sin
b
x
−
b
cos
b
x
)
{\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
∫
e
c
x
cos
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
cos
b
x
+
b
sin
b
x
)
{\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
∫
e
c
x
sin
n
x
d
x
=
e
c
x
sin
n
−
1
x
c
2
+
n
2
(
c
sin
x
−
n
cos
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
sin
n
−
2
x
d
x
{\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx}
∫
e
c
x
cos
n
x
d
x
=
e
c
x
cos
n
−
1
x
c
2
+
n
2
(
c
cos
x
+
n
sin
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
cos
n
−
2
x
d
x
{\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx}
∫
x
e
c
x
2
d
x
=
1
2
c
e
c
x
2
{\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}}
∫
1
σ
2
π
e
−
(
x
−
μ
)
2
/
2
σ
2
d
x
=
1
2
σ
(
1
+
erf
x
−
μ
σ
2
)
{\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2\sigma }}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})}
∫
e
x
2
d
x
=
e
x
2
(
∑
j
=
0
n
−
1
c
2
j
1
x
2
j
+
1
)
+
(
2
n
−
1
)
c
2
n
−
2
∫
e
x
2
x
2
n
d
x
(
n
>
0
)
,
{\displaystyle \int e^{x^{2}}\,dx=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;dx\quad (n>0),}
với
c
2
j
=
1
⋅
3
⋅
5
⋯
(
2
j
−
1
)
2
j
+
1
=
(
2
j
)
!
j
!
2
2
j
+
1
.
{\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}.}
∫
−
∞
∞
e
−
a
x
2
d
x
=
π
a
{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,dx={\sqrt {\pi \over a}}}
∫
0
∞
x
2
n
e
−
x
2
/
a
2
d
x
=
π
(
2
n
)
!
n
!
(
a
2
)
2
n
+
1
{\displaystyle \int _{0}^{\infty }x^{2n}e^{-{x^{2}}/{a^{2}}}\,dx={\sqrt {\pi }}{(2n)! \over {n!}}{\left({\frac {a}{2}}\right)}^{2n+1}}
Xem thêm
[
sửa
|
sửa mã nguồn
]
Danh sách tích phân
Tham khảo
[
sửa
|
sửa mã nguồn
]
Liên kết ngoài
[
sửa
|
sửa mã nguồn
]
Tính biểu thức tích phân
x
t
s
Danh sách tích phân
Hàm sơ cấp
Hàm hữu tỉ
Hàm vô tỉ
Hàm lượng giác
Hàm hypebolic
Hàm mũ
Hàm lôgarít
Hàm lượng giác ngược
Hàm hypebolic ngược
Bài viết này vẫn còn
sơ khai
. Bạn có thể giúp Wikipedia
mở rộng nội dung
để bài được hoàn chỉnh hơn.
x
t
s
Thể loại
:
Tích phân
Danh sách toán học
Thể loại ẩn:
Tất cả bài viết sơ khai
Sơ khai
Tìm kiếm
Tìm kiếm
Đóng mở mục lục
Danh sách tích phân với hàm mũ
35 ngôn ngữ
Thêm đề tài