Bước tới nội dung

Khác biệt giữa bản sửa đổi của “Phát sinh phi sinh học”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
Trang mới: “thumb|upright=1.5| [[Dạng sống được biết đến sớm nhất|Các dạng sống được biết đến sớm nhất là các vi sinh vật giả định hóa thạch, tìm thấy trong các kết tủa thủy nhiệt, có thể đã tồn tại từ 4,28 tỷ năm trước, tương đối sớm sau các đại dương Nguồn gốc của nước trên Trái Đất |hìn…”
Thẻ: Người dùng thiếu kinh nghiệm thêm nội dung lớn Liên kết định hướng
(Không có sự khác biệt)

Phiên bản lúc 11:39, ngày 7 tháng 10 năm 2021

Các dạng sống được biết đến sớm nhất là các vi sinh vật giả định hóa thạch, tìm thấy trong các kết tủa thủy nhiệt, có thể đã tồn tại từ 4,28 tỷ năm trước, tương đối sớm sau các đại dương hình thành cách đây 4.41 tỷ năm trước, và không lâu sau hình thành Trái Đất 4.54 tỷ năm trước.[1][2]

Trong sinh học tiến hóa, phát sinh phi sinh học (abiogenesis), hoặc tên không chính thức là nguồn gốc của sự sống (origin of life) viết tắt là OoL, [3][4][5][a] là quá trình tự nhiênsự sống đã phát sinh từ vật chất không sống, chẳng hạn như các hợp chất hữu cơ đơn giản.[6][4][7][8] Mặc dù các chi tiết của quá trình này vẫn chưa được hiểu rõ, giả thuyết khoa học phổ biến về quá trình biến đổi từ các thực thể không sống sang các thực thể sống không phải là một sự kiện đơn lẻ, mà là một quá trình tiến hóa tăng tiến phức tạp liên quan đến phân tử tự nhân bản, tự lắp ráp, tự phân giải, và sự xuất hiện của màng tế bào.[9][10][11] Mặc dù sự xuất hiện của sự sống là sự thật không bàn cãi giữa các nhà khoa học, nhưng các cơ chế khả thi cho quá trình này vẫn chưa được hiểu rõ. Có một số nguyên lý và giả thuyết về việc làm thế nào mà sự sống có thể xuất hiện.[12]

Việc nghiên cứu nguồn gốc sự sống nhằm mục đích xác định xem phản ứng hóa học tiền sự sống đã tạo ra sự sống như thế nào trong những điều kiện hoàn toàn khác với trên Trái đất ngày nay. [13] Nó chủ yếu sử dụng các công cụ từ sinh học, hóa họcđịa vật lý,[14] với các phương pháp tiếp cận gần đây đang cố gắng tổng hợp cả ba môn khoa học trên:[15] cụ thể là, thiên văn học, sinh hóa, sinh lý, địa hóa học, sinh học phân tử, hải dương họccổ sinh vật học. Sự sống hoạt động thông qua quá trình hoạt hóa chuyên biệt của cacbon và nước; phần lớn được xây dựng dựa trên bốn nhóm hóa chất chính: lipid (màng tế bào), carbohydrate (đường, cellulose), axit amin (chuyển hóa protein) và axit nucleic (DNA và RNA). Bất kỳ học thuyết thành công nào về sự phát sinh sự sống đều phải giải thích được nguồn gốc và sự tương tác của các lớp phân tử này.[16] Nhiều phương pháp tiếp cận sự phát sinh sự sống nghiên cứu cách các phân tử tự nhân bản, hoặc các thành phần của chúng đã ra đời như thế nào. Các nhà nghiên cứu thường nghĩ rằng sự sống hiện tại bắt nguồn từ thế giới RNA,[17] mặc dù các phân tử tự nhân bản khác có thể có trước RNA.[18][19]

Thí nghiệm sinh tổng hợp Miller–Urey của các phân tử hữu cơ nhỏ trong hỗn hợp các khí đơn giản được đặt trong một gradien nhiệt bằng cách đun nóng (bên phải) và làm lạnh (bên trái) hỗn hợp cùng một lúc; hỗn hợp cũng chịu phóng điện

Thí nghiệm Miller-Urey cổ điển năm 1952 và các nghiên cứu tương tự đã chứng minh rằng hầu hết các axit amin, thành phần hóa học của protein có mặt trong tất cả các sinh vật sống, có thể được tổng hợp từ các hợp chất vô cơ trong các điều kiện mô phỏng trạng thái của Trái Đất sơ khai. Các nhà khoa học đã đề xuất các nguồn năng lượng khác nhau bên ngoài có thể đã kích hoạt những phản ứng này, bao gồm sétbức xạ. Các phương pháp tiếp cận khác (giả thuyết "chuyển hóa-đầu tiên") tập trung vào việc tìm hiểu cách chất tự xúc tác trong các hệ thống hóa học trên Trái đất sơ khai có thể đã cung cấp phân tử tiền chất cần thiết cho quá trình tự nhân bản.[20]

Giả thuyết Panspermia[21] thì lại cho rằng những mầm sống đã phát sinh bên ngoài Trái đất bởi những cơ chế chưa xác định, và được mang đến Trái đất sơ khai thông qua bụi không gian [22] và các thiên thạch.[23] Người ta biết được các phân tử hữu cơ phức tạp hình thành trong Hệ Mặt trời và trong không gian giữa các vì sao, và những phân tử này có thể đã cung cấp tiền chất cho sự phát sinh sự sống trên Trái đất.[24][25][26][27]

Trái đất vẫn là nơi duy nhất trong vũ trụ được biết đến là tồn tại sự sống,[28][29] bằng chứng hóa thạch từ Trái đất cung cấp thông tin cho hầu hết các nghiên cứu về nguồn gốc sự sống. Tuổi của Trái đất là 4,54 tỷ năm;[30][31][32] bằng chứng sớm nhất không thể bàn cãi về sự sống trên Trái đất có niên đại ít nhất là 3,5 tỷ năm trước,[33][34][35] và có thể xuất hiện sớm nhất ở Kỷ Eoarchean (3.6–4.0 tỷ năm trước). Vào năm 2017, các nhà khoa học đã tìm thấy bằng chứng khả thi về sự sống sơ khai trên đất liền có niên đại 3,48 tỷ năm trong geyserite và các mỏ khoáng sản khác có liên quan (thường được tìm thấy xung quanh suối nước nóngmạch nước phun) tại Pilbara Craton nằm ở Tây Úc.[36][37][38][39] Tuy nhiên, một số khám phá cho thấy sự sống có thể đã xuất hiện trên Trái đất sớm hơn. Kể từ năm 2017, vi hóa thạch (vi sinh vật đã hóa thạch) trong kết tủa thủy nhiệt có niên đại từ 3,77 đến 4,28 tỷ năm trong đá ở Quebec, được xem là kỷ lục lâu đời nhất về sự sống trên Trái đất, cho thấy sự sống bắt đầu ngay sau sự hình thành đại dương 4.4 tỷ năm trước trong kỷ địa chất Hadean.[1][2][40][41][42]

Chiến lược nghiên cứu của NASA về sự phát sinh sự sống phát biểu rằng cần phải xác định các tương tác, cấu trúc và chức năng trung gian; nguồn năng lượng và các yếu tố môi trường góp phần vào sự đa dạng, chọn lọc và nhân rộng của các mô hình đại phân tử có thể tiến hóa.[43] Cần phải tiếp tục nhấn mạnh việc tạo lập một sơ đồ hóa học khái quát của các polyme nguyên thủy tiềm năng có khả năng lưu trữ thông tin. Sự ra đời của các polyme có thể tự nhân bản, lưu trữ thông tin di truyền và thể hiện các đặc điểm để chịu tác động của chọn lọc tự nhiên là một bước quan trọng trong sự xuất hiện của quá trình tiến hóa hóa học tiền sinh học.[43]

Sự sống hiện tại, kết quả của sự phát sinh sự sống phi sinh học: sinh học

Định nghĩa của sự sống

Có tới 123 định nghĩa về sự sống đã được biên soạn.[44]

Định nghĩa về sự sống có phần bất đồng với nhau; sách giáo khoa sinh học khác nhau định nghĩa sự sống khác nhau. James Gould ghi chú:

Hầu hết các từ điển đều định nghĩa sự sống là đặc tính phân biệt thực thể sống với thực thể chết, và định nghĩa thực thể chết là bị tước đoạt sự sống. Những định nghĩa kỳ lạ và không thỏa đáng này không cho chúng ta manh mối nào về những điểm chung của chúng ta với động vật nguyên sinh và thực vật.[45]

Neil Campbell và Jane Reece đã viết:

Hiện tượng mà chúng ta gọi là “sự sống” đã đưa ra một thách thức đơn giản, một câu định nghĩa chính bản thân nó.[46]

Sự khác biệt này cũng có thể được tìm thấy trong các cuốn sách về nguồn gốc của sự sống. John Casti đưa ra một câu định nghĩa:

Ngày nay, một thực thể được coi là "sống" nếu nó có khả năng thực hiện ba chức năng cơ bản: trao đổi chất, tự sửa chữa và tự nhân bản. [47]

Ngược lại, Dirk Schulze-Makuch và Louis Irwin dành toàn bộ chương đầu tiên của cuốn sách của họ để thảo luận về định nghĩa sự sống.[48]

Tuy nhiên, NASA hiện đang ưa chuộng một định nghĩa về sự sống là “một hệ thống hóa học tự duy trì có khả năng tiến hóa theo thuyết Darwin.”[49][50][51][52] Nói một cách đơn giản hơn, sự sống là, "vật chất có thể tự sinh sản và tiến hóa theo quy luật sinh tồn".[53][54][55]

Lên men

Chu trình Krebs
Sơ đồ tổng thể về các phản ứng hóa học của quá trình trao đổi chất, trong đó Chu trình Krebs có thể được nhận ra là vòng tròn ngay dưới giữa hình

Albert Lehninger đã tuyên bố vào khoảng năm 1970 rằng quá trình lên men, bao gồm quá trình đường phân, là một nguồn năng lượng nguyên thủy thích hợp cho nguồn gốc của sự sống.[56]

Vì các sinh vật sống có thể phát sinh lần đầu tiên trong môi trường thiếu oxy, nên quá trình lên men kỵ khí là loại cơ chế sinh học đơn giản nhất và nguyên thủy nhất để lấy năng lượng từ các phân tử chất dinh dưỡng..

Quá trình lên men bao gồm quá trình đường phân, chuyển hóa năng lượng của đường thành năng lượng hóa học ATP.

Hóa thẩm

Oxy hóa phosphoryl
Quá trình hóa thẩm tạo ra năng lượng trong ti thể

quá trình lên men đã được làm sáng tỏ vào khoảng năm 1970, trong khi cơ chế của quá trình oxy hóa phosphoryl thì không dẫn đến một số tranh cãi vẫn còn tồn tại, và các quá trình khác ngoài quá trình lên men có thể quá phức tạp vào thời điểm đó. Tuy nhiên, quá trình hóa thẩm của Peter Mitchell] hiện nay được chấp nhận rộng rãi là chính xác. Ngay cả bản thân Peter Mitchell cũng cho rằng quá trình lên men có trước quá trình hóa thẩm. Tuy nhiên, hóa thẩm có mặt ở khắp nơi trong cuộc sống. Một mô hình cho nguồn gốc của sự sống đã được trình bày dưới dạng hóa thẩm. [57][58]

Cả quá trình hô hấp của ti thể và quang hợp trong lục lạp đều sử dụng quá trình hóa thẩm để tạo ra hầu hết ATP của chúng.

Ngày nay, các nguồn năng lượng của hầu hết mọi sự sống đều có thể liên quan đến quá trình quang hợp, và nó được gọi là quá trình sản xuất sơ cấp nhờ ánh sáng mặt trời. Oxy cung cấp năng lượng cho các sinh vật [59] mà oxi hóa H2 or H2S tại các miệng phun thủy nhiệt dưới đáy đại dương là kết quả của quá trình quang hợp ở bề mặt đại dương.

ATP synthase
Mô tả ATP synthase bằng cách sử dụng gradient proton hóa trị để cung cấp năng lượng tổng hợp ATP thông qua quá trình oxy hóa phosphoryl.
Paul Boyer

Cơ chế tổng hợp ATP rất phức tạp và liên quan đến một màng kín, trong đó ATP synthase được gắn vào. ATP được tổng hợp bởi tiểu đơn vị F1 của ATP synthase bằng cơ chế gắn thay đổi được phát hiện bởi Paul Boyer. Năng lượng cần thiết để giải phóng ATP liên kết mạnh được tạo thành có nguồn gốc từ các proton di chuyển qua màng. Các proton này đã được gắn trên màng trong quá trình hô hấp hoặc quang hợp.

Thế giới RNA

Cấu trúc phân tử của tiểu đơn vị 30S ribosome từ Thermus thermophilus .[60] Protein có màu xanh lam và chuỗi RNA đơn có màu cam.

Giả thuyết thế giới RNA mô tả một Trái đất sơ khai có RNA tự nhân bản và xúc tác mà không cần sự có mặt của DNA hoặc protein.[61] Cộng đồng khoa học hiện tại chấp nhận rộng rãi rằng sự sống hiện tại trên Trái đất bắt nguồn từ một thế giới RNA,[17][62][63] mặc dù sự sống dựa trên RNA có thể không phải là sự sống đầu tiên tồn tại.[18][19] Kết luận này được rút ra từ nhiều bằng chứng độc lập, chẳng hạn như các nhận xét rằng RNA là trung tâm của quá trình dịch mã và các RNA nhỏ có thể xúc tác cho tất cả các chất hóa học và di truyền thông tin cần thiết cho sự sống.[19][64] Cấu trúc của ribosome được gọi là "bằng chứng không thể chối cãi", vì nó cho thấy ribosome là một ribozyme, với lõi trung tâm là RNA và không có chuỗi axit amin nào có độ dài tới 18 Ångström (đường kính của một nguyên tử là cỡ 1 Angstrom) của khu vực hoạt động nơi hình thành liên kết peptit được xúc tác.[18][65] Tuy nhiên, vào tháng 3 năm 2021, các nhà nghiên cứu đã báo cáo bằng chứng cho thấy rằng một dạng RNA vận chuyển sơ cấp có thể là một phân tử tự nhân bản chính nó trong quá trình phát sinh rất sớm của sự sống.[66][67]

Khái niệm về thế giới RNA lần đầu tiên được đề xuất vào năm 1962 bởi Alexander Rich,[68] và thuật ngữ này được đặt ra bởi Walter Gilbert vào năm 1986.[19][69] Vào tháng 3 năm 2020, nhà thiên văn học Tomonori Totani đã trình bày một phương pháp thống kê để giải thích cách một phân tử RNA ban đầu có thể được tạo ra một cách ngẫu nhiên trong vũ trụ kể từ vụ nổ Big Bang.[70][71]

Phát sinh loài và LUCA

Một sơ đồ phả hệ đặt các hyperthermophile cực khác bên cạnh LUCA ở gốc của sơ đồ phát sinh sự sống

Bắt đầu với công trình của Carl Woese, các nghiên cứu phân tử đã đặt tổ tiên chung toàn thể cuối cùng (LUCA) giữa Vi khuẩn và một nhánh được hình thành bởi cổ khuẩnsinh vật nhân thực trong cây phát sinh loài của sự sống.[72][73] Một số ít các nghiên cứu đã đặt LUCA nằm trong Vi khuẩn, đề xuất rằng sinh vật nhân chuẩn là một trong những dẫn xuất của quá trình tiến hóa.[74] Thomas Cavalier-Smith đưa ra giả thuyết rằng ngành đa dạng về mặt kiểu hình Chloroflexi bao hàm cả LUCA.[75]

Năm 2005, Peter Ward đã đề xuất rằng RNA được tổng hợp bằng các yếu tố phi sinh học sẽ được bao bọc trong nang (capsule) và sau đó tạo ra RNA ribozyme nhân bản. Sau đó được phân tách giữa vực Ribosa (sự sống RNA), vực Viorea (Virut) và vực Terroa (sự sống tế bào), mà hàm chứa LUCA của các cây phát sinh loài trước đó.[76]

Vào năm 2016, một tập hợp 355 gen có khả năng tồn tại trong Tổ tiên chung toàn thể cuối cùng (LUCA) của tất cả sinh vật sống trên Trái đất đã được xác định.[77] Tổng cộng có 6,1 triệu gen nhân sơ từ Vi khuẩn và Cổ khuẩn đã được giải trình tự, xác định 355 cụm protein trong số 286.514 cụm protein có lẽ là xuất phát từ LUCA. Kết quả cho thấy LUCA là sinh vật yếm khí chuyển hóa bằng con đường Wood–Ljungdahl, cố định nitơ và cacbon, ưa nhiệt. Đồng yếu tố của nó gợi ý sự phụ thuộc nhiều nhất vào môi trường giàu hydro, carbon dioxide, sắtkim loại chuyển tiếp. Mã di truyền của nó yêu cầu biến đổi nucleosidemethyl hóa. LUCA có khả năng sinh sống trong môi trường kỵ khí như lỗ thông hơi thủy nhiệt tại một môi trường hoạt địa hóa.[78][79]

Các vấn đề chính trong nguồn gốc sự sống

Protein với axit nucleic như là tiền thân của quá trình tổng hợp protein

Các tiền chất có thể cần cho quá trình tổng hợp protein bao gồm cơ chế tổng hợp các đồng yếu tố peptit ngắn hoặc hình thành cơ chế nhân đôi RNA. Có khả năng là ribosome của tổ tiên chúng ta được cấu tạo hoàn toàn từ RNA, mặc dù một số vai trò sau đó đã được protein đảm nhận thay. Các câu hỏi quan trọng còn lại về chủ đề này bao gồm xác định lực tác động của chọn lọc tự nhiên đối với sự tiến hóa của ribosome và xác định mã di truyền hình thành như thế nào.[80]

Eugene Koonin cho biết,

Bất chấp nỗ lực thực nghiệm và đặt ra các học thuyết đáng kể, không có kịch bản hấp dẫn nào hiện tồn tại giải thích cho nguồn gốc của quá trình sao chép và dịch mã, đây là các quá trình quan trọng cung cấp cốt lõi của các hệ thống sinh học và là điều kiện tiên quyết rõ ràng của sinh học tiến hóa. Khái niệm Thế giới RNA có thể mang lại cơ hội tốt nhất để giải quyết vấn đề hóc búa này nhưng cho đến nay vẫn chưa thể giải thích đầy đủ về sự xuất hiện của một hệ thống sao chép RNA hiệu quả hoặc hệ thống dịch mã. Cách giải thích của học thuyết “nhiều thế giới trong một”(many worlds in one) của mô hình lạm phát vĩnh cửu vũ trụ gợi ý cách thoát khỏi câu hỏi hóc búa này. Bởi vì, trong một đa vũ trụ vô hạn với một số lượng hữu hạn các lịch sử vĩ mô riêng biệt (mỗi cái lặp đi lặp lại vô số lần), sự xuất hiện của các hệ thống thậm chí rất phức tạp một cách tình cờ không chỉ có thể xảy ra mà còn là điều không thể tránh khỏi.[81]

Sự xuất hiện của mã di truyền

See: Mã di truyền.

Lỗi trong thảm họa dịch mã

Hoffmann đã chỉ ra rằng một cỗ máy dịch thuật dễ mắc lỗi ban đầu có thể ổn định chống lại một loạt thảm họa lỗi thuộc loại từng được coi là có vấn đề về nguồn gốc sự sống, và được gọi là "nghịch lý của Orgel".[82][83][84]

Tính đồng nhất về đồng phân quang học

Tính đồng nhất về đồng phân quang học đề cập đến sự đồng nhất về quang học của một số vật liệu được cấu tạo từ các đơn vị đồng phân quang học. Đồng phân quang học được xem là các dạng 3D không thể đồng nhất, là hình ảnh phản chiếu của nhau, cũng như tay trái và tay phải. Các sinh vật sống sử dụng các phân tử có cùng đồng phân quang học ("tính thuận tay"): hầu như không có ngoại lệ,[85] axit amin thuận tay trái trong khi nucleotide và đường thuận tay phải. Các phân tử cùng thuận tay có thể được tổng hợp, nhưng trong trường hợp không có nguồn cùng thuận tay hoặc chất xúc tác, chúng sẽ được tạo ra trong một hỗn hợp 50/50 của cả tay trái và tay phải đồng phân quang học (enantiomer)(được gọi là hỗn hợp racemic). Các cơ chế đã biết để sản xuất hỗn hợp không racemic từ nguyên liệu ban đầu racemic bao gồm: các quy luật vật lý bất đối xứng, chẳng hạn như tương tác điện yếu; môi trường không đối xứng, chẳng hạn như môi trường gây ra bởi ánh sáng phân cực tròn, tinh thể thạch anh hoặc chuyển động quay của Trái đất, dao động thống kê trong quá trình tổng hợp racemic,[86]phá vỡ đối xứng tự phát.[87][88][89]

Sau khi được tạo ra, tính đồng nhất về đồng phân quang học sẽ được lựa chọn.[90] Một sai lệch nhỏ (dư thừa đồng phân quang học) (thuận tay trái hay tay phải) trong quần thể có thể được khuếch đại thành một sai lệch lớn bằng sự xúc tác bất đối xứng (dẫn đến chỉ thuận một trong hai tay), chẳng hạn như trong Phản ứng Soai.[91] Trong quá trình tự xúc tác bất đối xứng, chất xúc tác là một phân tử đồng phân quang học, có nghĩa là một phân tử đồng phân quang học đang xúc tác quá trình sản xuất của chính nó. Một lượng dư đồng phân quang học ban đầu, chẳng hạn như có thể được tạo ra bởi ánh sáng phân cực, sau đó nhờ quá trình tự xúc tác sẽ trở nên dồi dào hơn cạnh tranh với chất đồng phân quang học không thuận tay với nó.[92]

Clark đã gợi ý rằng tính đồng nhất về đồng phân quang học có thể bắt nguồn từ ngoài không gian, vì các nghiên cứu về axit amin trên thiên thạch Murchison cho thấy L-alanine xuất hiện thường xuyên hơn gấp đôi dạng D của nó, và Axit L-glutamic phổ biến hơn ba lần so với dạng D của nó. Các bề mặt tinh thể bất đối xứng khác nhau cũng có thể hoạt động như các vị trí để có thể cô đặc và tổng hợp các đơn vị monome cùng thuận tay thành các đại phân tử.[93][94] Các hợp chất được tìm thấy trên thiên thạch gợi ý rằng tính đồng nhất về đồng phân quang học của sự sống bắt nguồn từ sự tổng hợp phi sinh học, vì các axit amin từ thiên thạch cho thấy xu hướng thuận tay trái, trong khi đường cho thấy xu hướng thuận tay phải, giống như được tìm thấy trong các sinh vật sống.[95]

Vũ trụ sơ khai và Trái đất

Vũ trụ sơ khai với những ngôi sao đầu tiên

Ngay sau Big Bang, xảy ra khoảng 14 tỷ năm trước, các nguyên tố hóa học duy nhất hiện diện trong vũ trụ là hydro, heli và lithium, ba nguyên tử nhẹ nhất trong bảng tuần hoàn. Các nguyên tố này dần dần kết hợp với nhau để tạo thành các ngôi sao. Những ngôi sao ban đầu này có khối lượng lớn và tồn tại trong thời gian ngắn, tạo ra các nguyên tố nặng hơn thông qua tổng hợp hạt nhân sao. Carbon, hiện là nguyên tố hóa học phong phú thứ tư trong vũ trụ (sau hydro, helioxy), được hình thành chủ yếu trong sao lùn trắng, đặc biệt là những ngôi sao lớn hơn hai lần khối lượng Mặt trời.[96][97]

Khi những ngôi sao này đi đến cuối vòng đời, chúng đã đẩy những nguyên tố nặng hơn này, trong số đó có carbon và oxy, ra khắp vũ trụ. Những nguyên tố nặng hơn này cho phép hình thành các vật thể mới, bao gồm các hành tinh đá và các thiên thể khác.[98]

Theo giả thuyết tinh vân Mặt Trời (Nebular hypothesis), sự hình thành và tiến hóa của Hệ mặt trời bắt đầu vào 4.6 tỷ năm trước với sự sụp đổ hấp dẫn của một phần nhỏ của đám mây phân tử khổng lồ.[99] Phần lớn khối lượng đang sụp đổ tập trung ở trung tâm, tạo thành Mặt trời, trong khi phần còn lại phẳng thành đĩa tiền hành tinh trong đó có hành tinh, mặt trăng, tiểu hành tinh các thiên thể nhỏ khác trong hệ Mặt Trời được hình thành.

Sự xuất hiện của Trái đất

Trái đất kỷ Hadean ban đầu không phải là nơi có thể sống được được với bất kỳ sinh vật nào. Trong quá trình hình thành, Trái đất đã mất đi một phần đáng kể khối lượng ban đầu và do đó thiếu lực hấp dẫn để giữ hydro phân tử và phần lớn các khí trơ ban đầu.[100] The atmosphere consisted largely of water vapor, nitrogen and carbon dioxide, with smaller amounts of carbon monoxide, hydrogen, and sulfur compounds.[101] The solution of carbon dioxide in water is thought to have made the seas slightly acidic, giving them a pH of about 5.5.[102] Bầu khí quyển Hadean đã trở thành "một phòng thí nghiệm hóa học ngoài trời đặc trưng bởi sự khổng lồ, hiệu quả,"[103] similar to volcanic gases today which still support some abiotic chemistry.[103]

Đại dương có thể xuất hiện 200 triệu năm sau khi Trái đất hình thành, trong một môi trường khử, nóng 100 độ C, khi độ pH 5,8 tăng lên nhanh chóng hướng tới mức trung tính .[104] Viễn cảnh này đã được hỗ trợ từ việc xác định niên đại của tinh thể zircon 4.404 tỷ năm trước từ thạch anh biến chất thuộc Mount Narryer ở Tây Úc, cung cấp bằng chứng cho thấy đại dương và lớp vỏ lục địa đã xuất hiện trong vòng 150 triệu năm sau khi Trái Đất hình thành.[105] Mặc dù có khả năng sự gia tăng núi lửa và sự tồn tại của nhiều [kiến tạo mảng]] nhỏ hơn, người ta cho rằng từ 4,4 đến 4,3 tỷ năm trước, Trái đất là một thế giới nước, với rất ít nếu có bất kỳ lớp vỏ lục địa nào, là một sự rối loạn của dòng chảy bầu khí quyển và thủy quyển chịu ánh sáng tia cực tím (UV) cường độ cao, từ [[sao T Tauri | giai đoạn T Tauri], bức xạ vũ trụ và tác động của cầu lửa.[106] Sự gia nhiệt bên trong do đối lưu hấp dẫn giữa lõi lớp phủ sẽ gây ra rất nhiều sự đối lưu lớp phủ, với hậu quả có thể xảy ra là có nhiều mảng kiến tạo nhỏ hơn và hoạt động tích cực hơn so với hiện tại.

Giả thuyết cho Bắn phá hạng nặng muộn đặt ra rằng môi trường Hadean giữa 4,28 [1][2] và 3,8 tỷ năm trước sẽ rất nguy hiểm đối với sự sống hiện đại. Theo Mô hình Nice, những thay đổi trong quỹ đạo của những hành tinh khổng lồ có thể đã bắn phá Trái đất bằng các tiểu hành tinh và sao chổi đã đánh dấu Mặt trănghành tinh bên trong.[107] Các vụ va chạm thường xuyên giữa các ngôi sao với các vật thể có đường kính lên tới 500 km sẽ tiêu diệt toàn bộ sự sống trên bề mặt hành tinh và làm bốc hơi các đại dương trong vòng vài tháng sau khi va chạm. Hơi nước nóng và hơi đá tạo thành những đám mây ở cao độ sẽ bao phủ hoàn toàn hành tinh,[103] làm cho quang hợp trở nên bất khả thi. Mưa sẽ từ từ kéo giảm độ dày của các đám mây, trả các đại dương về độ sâu ban đầu khoảng 3.000 y sau sự kiện va chạm.[108] Những tác động trước 3,5 tỷ năm trước cũng sẽ mang lại số lượng chất hữu cơ tương đương với lượng chất hữu cơ được tạo ra từ các nguồn sống trên cạn.[109][110] Khoảng thời gian giữa các sự kiện môi trường tàn phá như vậy cung cấp giai đoạn cửa sổ cho nguồn gốc có thể của sự sống trong môi trường sơ khai. Nếu môi trường thủy nhiệt ở biển sâu là nơi khởi nguồn của sự sống, thì quá trình phát sinh phi sinh học (abiogenesis) có thể đã xảy ra sớm nhất vào thời 4.0-4.2 tỷ năm trước. Nếu địa điểm nằm trên bề mặt Trái đất, quá trình phát sinh phi sinh học chỉ có thể xảy ra trong khoảng từ 3,7 đến 4,0 Gya.[111] However, new lunar surveys and samples have led scientists, including an architect of the Nice model, to deemphasize the LHB.[112]

Nếu sự sống tiến hóa sâu dưới mười mét, nó sẽ được bảo vệ khỏi cả những tác động muộn và mức bức xạ UV cao từ Mặt trời ở giai đoạn T Tauri. Mô phỏng của lớp vỏ đại dương được làm nóng bằng địa nhiệt tạo ra nhiều chất hữu cơ hơn nhiều so với những mô phỏng được tìm thấy trong thí nghiệm Miller – Urey. Trong miệng phun thủy nhiệt sâu, Everett Shock đã phát hiện ra "có một động lực nhiệt động lực học khổng lồ để hình thành các hợp chất hữu cơ, như nước biển và chất lỏng thủy nhiệt, ở xa trạng thái cân bằng, trộn lẫn và chuyển sang một giai đoạn ổn định hơn."[113] Shock phát hiện ra rằng năng lượng có sẵn đạt cực đại ở 100–150 ° C, chính xác là nhiệt độ mà vi khuẩn hyperthermophilic thermoacidophilic archaea đang sống. Những sinh vật này được đặt ở gốc của cây phát sinh loài, gần nhất với Tổ tiên chung nhất cuối cùng (LUCA).[114]

Bằng chứng sớm nhất về sự sống: cổ sinh vật học

[[File:Stromatolites.jpg|left|thumb| Precambrian stromatolite trong Hệ tầng Siyeh, Vườn quốc gia Glacier. Một nghiên cứu năm 2002 cho rằng những hệ thống này tận 3,5 Gya (3,5 tỷ năm tuổi). Điều này cho thấy chúng là bằng chứng của một trong những dạng sống sớm nhất trên Trái đất.] [[File:Stromatolites in Sharkbay.jpg|thumb|[[Stromatolit | Những Stromatolit ở vịnh Cá Mập] Sự sống sớm nhất trên Trái đất tồn tại hơn 3,5 Gya (tỷ năm trước),[33][34][35] trong Kỷ Eoarchean khi lớp vỏ đủ đông đặc lại sau kỷ Hadean Eon nóng chảy. Bằng chứng vật lý sớm nhất được tìm thấy cho đến nay bao gồm những vi hóa thạch trong Vành đai Greenstone của Nuvvuagittuq thuộc Bắc Quebec, trong hệ dải sắt đá ít nhất 3,77 và có thể 4,28 & nbsp; Gya.[1][115] Phát hiện này cho thấy sự sống đã phát triển rất nhanh sau khi các đại dương hình thành. Cấu trúc của vi khuẩn được ghi nhận là tương tự như vi khuẩn được tìm thấy gần miệng phun thủy nhiệt trong thời kỳ hiện đại, và cung cấp hỗ trợ cho giả thuyết rằng quá trình phát sinh phi sinh học bắt đầu gần các miệng phun thủy nhiệt.[41][1]

Than chì sinh học đã được tìm thấy trong đá thiên thạch 3,7 & nbsp; Gyo từ phía tây nam Greenland[116]thảm vi sinh vật được tìm thấy trong đá sa thạch 3,48 & nbsp; Gyo từ Tây Úc.[117][118] Bằng chứng về sự sống sơ khai trên đá từ đảo Akilia, gần vành đai siêu lớp Isua ở tây nam Greenland, có niên đại 3,7 & nbsp; Gya đã cho thấy đồng vị carbon sinh học.[119][120] Ở các phần khác của vành đai siêu lớp Isua, các thể vùi than chì bị mắc kẹt trong các tinh thể garnat được kết nối với các nguyên tố khác của sự sống: oxy, nitơ và có thể cả phốt pho ở dạng photphat, cung cấp thêm bằng chứng cho sự sống 3,7 & nbsp; Gya.[121] Tại Strelley Pool, vùng Pilbara của Tây Úc, bằng chứng thuyết phục về sự sống sơ khai đã được tìm thấy trong sa thạch liên kết pyrit tại một bãi biển hóa thạch, cho thấy các tế bào hình ống tròn oxy hóa lưu huỳnh bằng cách quang hợp trong điều kiện không có oxy.[122][123][124] Nghiên cứu sâu hơn về zircon từ Tây Úc vào năm 2015 cho thấy rằng sự sống có khả năng tồn tại trên Trái đất ít nhất là 4,1 Gya.[125][126][127]

Vào năm 2019, Raphael Baumgartner tại Đại học New South Wales ở Úc và các đồng nghiệp của ông đã xem xét những tảng đá ở vùng Pilbara của Tây Úc. Khu vực này chứa một số loại đá được bảo tồn lâu đời nhất trên Trái đất. Trong số ba địa điểm quan trọng nhất, Hệ Dresser là lâu đời nhất, với những tảng đá có niên đại 3,48 tỷ năm tuổi. Hệ Dresser dường như chứa các cấu trúc phân lớp được gọi là stromatolit.[128] Các stromatolit này nằm trong các địa tầng trầm tích-thủy nhiệt chưa được định dạng và thể hiện các đặc điểm cấu trúc nguồn gốc sinh vật. Vào năm 2017, Tara Djokic và nhóm của cô ấy đã chỉ ra rằng các phần của hệ Dresser bảo tồn suối nước nóng trên các vùng đất, nhưng các khu vực khác dường như là biển nông.[129]

  1. ^ a b c d e Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T.S. (1 tháng 3 năm 2017). “Evidence for early life in Earth's oldest hydrothermal vent precipitates”. Nature. 543 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. Lưu trữ bản gốc ngày 8 tháng 9 năm 2017. Truy cập ngày 2 tháng 3 năm 2017.
  2. ^ a b c Zimmer, Carl (1 tháng 3 năm 2017). “Scientists Say Canadian Bacteria Fossils May Be Earth's Oldest”. The New York Times. Lưu trữ bản gốc ngày 2 tháng 3 năm 2017. Truy cập ngày 2 tháng 3 năm 2017.
  3. ^ Oparin, Aleksandr Ivanovich (1938). The Origin of Life. Phoenix Edition Series. Morgulis, Sergius biên dịch (ấn bản 2). Mineola, New York: Courier Corporation (xuất bản 2003). ISBN 978-0486495224. Truy cập ngày 16 tháng 6 năm 2018.
  4. ^ a b Peretó, Juli (2005). “Controversies on the origin of life” (PDF). International Microbiology. 8 (1): 23–31. PMID 15906258. Bản gốc (PDF) lưu trữ ngày 24 tháng 8 năm 2015. Truy cập ngày 1 tháng 6 năm 2015. Ever since the historical contributions by Aleksandr I. Oparin, in the 1920s, the intellectual challenge of the origin of life enigma has unfolded based on the assumption that life originated on Earth through physicochemical processes that can be supposed, comprehended, and simulated; that is, there were neither miracles nor spontaneous generations.
  5. ^ Compare: Scharf, Caleb; và đồng nghiệp (18 tháng 12 năm 2015). “A Strategy for Origins of Life Research”. Astrobiology. 15 (12): 1031–1042. Bibcode:2015AsBio..15.1031S. doi:10.1089/ast.2015.1113. PMC 4683543. PMID 26684503. What do we mean by the origins of life (OoL)? [...] Since the early 20th century the phrase OoL has been used to refer to the events that occurred during the transition from non-living to living systems on Earth, i.e., the origin of terrestrial biology (Oparin, 1924; Haldane, 1929). The term has largely replaced earlier concepts such as abiogenesis (Kamminga, 1980; Fry, 2000).
  6. ^ Oparin 1953, tr. vi
  7. ^ Warmflash, David; Warmflash, Benjamin (tháng 11 năm 2005). “Did Life Come from Another World?”. Scientific American. 293 (5): 64–71. Bibcode:2005SciAm.293e..64W. doi:10.1038/scientificamerican1105-64. PMID 16318028. According to the conventional hypothesis, the earliest living cells emerged as a result of chemical evolution on our planet billions of years ago in a process called abiogenesis.
  8. ^ Yarus 2010, tr. 47
  9. ^ Witzany, Guenther (2016). “Crucial steps to life: From chemical reactions to code using agents” (PDF). BioSystems. 140: 49–57. doi:10.1016/j.biosystems.2015.12.007. PMID 26723230.
  10. ^ Howell, Elizabeth (8 tháng 12 năm 2014). “How Did Life Become Complex, And Could It Happen Beyond Earth?”. Astrobiology Magazine. Truy cập ngày 14 tháng 2 năm 2018.
  11. ^ Tirard, Stephane (20 tháng 4 năm 2015). Abiogenesis – Definition. Encyclopedia of Astrobiology. tr. 1. doi:10.1007/978-3-642-27833-4_2-4. ISBN 978-3-642-27833-4. Thomas Huxley (1825–1895) used the term abiogenesis in an important text published in 1870. He strictly made the difference between spontaneous generation, which he did not accept, and the possibility of the evolution of matter from inert to living, without any influence of life. [...] Since the end of the nineteenth century, evolutive abiogenesis means increasing complexity and evolution of matter from inert to living state in the abiotic context of evolution of primitive Earth.
  12. ^ Levinson, Gene (2020). Rethinking evolution: the revolution that's hiding in plain sight. World Scientific. ISBN 978-1786347268.
  13. ^ Voet & Voet 2004, tr. 29
  14. ^ Dyson 1999
  15. ^ Davies, Paul (1998). The Fifth Miracle, Search for the origin and meaning of life. Penguin. Bibcode:1998fmso.book.....D.[cần số trang]
  16. ^ Ward, Peter; Kirschvink, Joe (2015). A New History of Life: the radical discoveries about the origins and evolution of life on earth. Bloomsbury Press. tr. 39–40. ISBN 978-1608199105.
  17. ^ a b Copley, Shelley D.; Smith, Eric; Morowitz, Harold J. (tháng 12 năm 2007). “The origin of the RNA world: Co-evolution of genes and metabolism” (PDF). Bioorganic Chemistry. 35 (6): 430–443. doi:10.1016/j.bioorg.2007.08.001. PMID 17897696. Bản gốc (PDF) lưu trữ ngày 5 tháng 9 năm 2013. Truy cập ngày 8 tháng 6 năm 2015. The proposal that life on Earth arose from an RNA world is widely accepted. Lỗi chú thích: Thẻ <ref> không hợp lệ: tên “RNA” được định rõ nhiều lần, mỗi lần có nội dung khác
  18. ^ a b c Robertson, Michael P.; Joyce, Gerald F. (tháng 5 năm 2012). “The origins of the RNA world”. Cold Spring Harbor Perspectives in Biology. 4 (5): a003608. doi:10.1101/cshperspect.a003608. PMC 3331698. PMID 20739415.Quản lý CS1: ref=harv (liên kết) Lỗi chú thích: Thẻ <ref> không hợp lệ: tên “Robertson2012” được định rõ nhiều lần, mỗi lần có nội dung khác
  19. ^ a b c d Cech, Thomas R. (tháng 7 năm 2012). “The RNA Worlds in Context”. Cold Spring Harbor Perspectives in Biology. 4 (7): a006742. doi:10.1101/cshperspect.a006742. PMC 3385955. PMID 21441585. Lỗi chú thích: Thẻ <ref> không hợp lệ: tên “Cech2012” được định rõ nhiều lần, mỗi lần có nội dung khác
  20. ^ Keller, Markus A.; Turchyn, Alexandra V.; Ralser, Markus (25 tháng 3 năm 2014). “Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean”. Molecular Systems Biology. 10 (725): 725. doi:10.1002/msb.20145228. PMC 4023395. PMID 24771084.
  21. ^ Rampelotto, Pabulo Henrique (26 tháng 4 năm 2010). Panspermia: A Promising Field of Research (PDF). Astrobiology Science Conference 2010. Houston, TX: Lunar and Planetary Institute. tr. 5224. Bibcode:2010LPICo1538.5224R. Lưu trữ (PDF) bản gốc ngày 27 tháng 3 năm 2016. Truy cập ngày 3 tháng 12 năm 2014. Conference held at League City, TX
  22. ^ Berera, Arjun (6 tháng 11 năm 2017). “Space dust collisions as a planetary escape mechanism”. Astrobiology. 17 (12): 1274–1282. arXiv:1711.01895. Bibcode:2017AsBio..17.1274B. doi:10.1089/ast.2017.1662. PMID 29148823. S2CID 126012488.
  23. ^ Chan, Queenie H.S. (10 tháng 1 năm 2018). “Organic matter in extraterrestrial water-bearing salt crystals”. Science Advances. 4 (1, eaao3521): eaao3521. Bibcode:2018SciA....4O3521C. doi:10.1126/sciadv.aao3521. PMC 5770164. PMID 29349297.
  24. ^ Ehrenfreund, Pascale; Cami, Jan (tháng 12 năm 2010). “Cosmic carbon chemistry: from the interstellar medium to the early Earth”. Cold Spring Harbor Perspectives in Biology. 2 (12): a002097. doi:10.1101/cshperspect.a002097. PMC 2982172. PMID 20554702.
  25. ^ Perkins, Sid (8 tháng 4 năm 2015). “Organic molecules found circling nearby star”. Science (News). Washington, DC: American Association for the Advancement of Science. Truy cập ngày 2 tháng 6 năm 2015.
  26. ^ King, Anthony (14 tháng 4 năm 2015). “Chemicals formed on meteorites may have started life on Earth”. Chemistry World (News). London: Royal Society of Chemistry. Lưu trữ bản gốc ngày 17 tháng 4 năm 2015. Truy cập ngày 17 tháng 4 năm 2015.
  27. ^ Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; và đồng nghiệp (13 tháng 4 năm 2015). “Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation”. Proc. Natl. Acad. Sci. U.S.A. 112 (21): E2746–E2755. Bibcode:2015PNAS..112E2746S. doi:10.1073/pnas.1422225112. PMC 4450408. PMID 25870268.
  28. ^ Graham, Robert W. (tháng 2 năm 1990). “Extraterrestrial Life in the Universe” (PDF) (NASA Technical Memorandum 102363). Lewis Research Center, Cleveland, Ohio: NASA. Lưu trữ (PDF) bản gốc ngày 3 tháng 9 năm 2014. Truy cập ngày 2 tháng 6 năm 2015.
  29. ^ Altermann 2009, tr. xvii
  30. ^ “Age of the Earth”. United States Geological Survey. 9 tháng 7 năm 2007. Lưu trữ bản gốc ngày 23 tháng 12 năm 2005. Truy cập ngày 10 tháng 1 năm 2006.
  31. ^ Dalrymple 2001, tr. 205–221
  32. ^ Manhesa, Gérard; Allègre, Claude J.; Dupréa, Bernard; Hamelin, Bruno (tháng 5 năm 1980). “Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics”. Earth and Planetary Science Letters. 47 (3): 370–382. Bibcode:1980E&PSL..47..370M. doi:10.1016/0012-821X(80)90024-2.
  33. ^ a b Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (5 tháng 10 năm 2007). “Evidence of Archean life: Stromatolites and microfossils”. Precambrian Research. 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009.
  34. ^ a b Schopf, J. William (29 tháng 6 năm 2006). “Fossil evidence of Archaean life”. Philosophical Transactions of the Royal Society B. 361 (1470): 869–885. doi:10.1098/rstb.2006.1834. PMC 1578735. PMID 16754604.
  35. ^ a b Raven & Johnson 2002, tr. 68
  36. ^ Staff (9 tháng 5 năm 2017). “Oldest evidence of life on land found in 3.48-billion-year-old Australian rocks”. Phys.org. Lưu trữ bản gốc ngày 10 tháng 5 năm 2017. Truy cập ngày 13 tháng 5 năm 2017.
  37. ^ Djokic, Tara; Van Kranendonk, Martin J.; Campbell, Kathleen A.; Walter, Malcolm R.; Ward, Colin R. (9 tháng 5 năm 2017). “Earliest signs of life on land preserved in ca. 3.5 Gao hot spring deposits”. Nature Communications. 8: 15263. Bibcode:2017NatCo...815263D. doi:10.1038/ncomms15263. PMC 5436104. PMID 28486437.
  38. ^ Schopf, J. William; Kitajima, Kouki; Spicuzza, Michael J.; Kudryavtsev, Anatolly B.; Valley, John W. (2017). “SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions”. PNAS. 115 (1): 53–58. Bibcode:2018PNAS..115...53S. doi:10.1073/pnas.1718063115. PMC 5776830. PMID 29255053.
  39. ^ Tyrell, Kelly April (18 tháng 12 năm 2017). “Oldest fossils ever found show life on Earth began before 3.5 billion years ago”. University of Wisconsin-Madison. Truy cập ngày 18 tháng 12 năm 2017.
  40. ^ Ghosh, Pallab (1 tháng 3 năm 2017). “Earliest evidence of life on Earth found”. BBC News. Lưu trữ bản gốc ngày 2 tháng 3 năm 2017. Truy cập ngày 2 tháng 3 năm 2017.
  41. ^ a b Dunham, Will (1 tháng 3 năm 2017). “Canadian bacteria-like fossils called oldest evidence of life”. Reuters. Lưu trữ bản gốc ngày 2 tháng 3 năm 2017. Truy cập ngày 1 tháng 3 năm 2017.
  42. ^ “Researchers uncover 'direct evidence' of life on Earth 4 billion years ago”. Deutsche Welle. Truy cập ngày 5 tháng 3 năm 2017.
  43. ^ a b “NASA Astrobiology Strategy” (PDF). NASA. 2015. Bản gốc (PDF) lưu trữ ngày 22 tháng 12 năm 2016. Truy cập ngày 24 tháng 9 năm 2017.
  44. ^ Trifonov, Edward N. (17 tháng 3 năm 2011). “Vocabulary of Definitions of Life Suggests a Definition”. Journal of Biomolecular Structure and Dynamics. 29 (2): 259–266. doi:10.1080/073911011010524992. PMID 21875147. S2CID 38476092. Truy cập ngày 15 tháng 12 năm 2020.
  45. ^ Gould, James L.; Keeton, William T. (1996). Biological Science (ấn bản 6). New York: W.W. Norton.
  46. ^ Campbell, Neil A.; Reece, Jane B. (2005). Biology (ấn bản 7). Sn Feancisco: Benjamin.
  47. ^ Casti, John L. (1989). Paradigms lost. Images of man in the mirror of science. New York: Morrow. Bibcode:1989plim.book.....C.
  48. ^ Schulze-Makuch, Dirk; Irwin, Louis N. (2018). Life in the Universe. Expectations and Constraints (ấn bản 3). New York: Springer.
  49. ^ Voytek, Mary a. (6 tháng 3 năm 2021). “About Life Detection”. NASA. Truy cập ngày 8 tháng 3 năm 2021.
  50. ^ Marshall, Michael (14 tháng 12 năm 2020). “He may have found the key to the origins of life. So why have so few heard of him? - Hungarian biologist Tibor Gánti is an obscure figure. Now, more than a decade after his death, his ideas about how life began are finally coming to fruition”. National Geographic Society. Truy cập ngày 8 tháng 3 năm 2021.
  51. ^ Mullen, Lesle (1 tháng 8 năm 2013). “Defining Life: Q&A with Scientist Gerald Joyce”. Space.com. Truy cập ngày 8 tháng 3 năm 2021.
  52. ^ Zimmer, Carl (26 tháng 2 năm 2021). “The Secret Life of a Coronavirus - An oily, 100-nanometer-wide bubble of genes has killed more than two million people and reshaped the world. Scientists don't quite know what to make of it”. Truy cập ngày 8 tháng 3 năm 2021.
  53. ^ Luttermoser, Donald G. (2012). “ASTR-1020: Astronomy II Course Lecture Notes Section XII” (PDF). East Tennessee State University. Bản gốc (PDF) lưu trữ ngày 7 tháng 7 năm 2017. Truy cập ngày 8 tháng 3 năm 2021.
  54. ^ Luttermoser, Donald G. (2012). “Physics 2028: Great Ideas in Science: The Exobiology Module” (PDF). East Tennessee State University. Bản gốc (PDF) lưu trữ ngày 12 tháng 4 năm 2016. Truy cập ngày 8 tháng 3 năm 2021.
  55. ^ Luttermoser, Donald G. (2012). “Lecture Notes for ASTR 1020 - Astronomy II with Luttermoser at East Tennessee (ETSU)”. East Tennessee State University. Bản gốc lưu trữ ngày 2 tháng 5 năm 2012. Truy cập ngày 8 tháng 3 năm 2021.
  56. ^ Lehninger, Albert L. (1970). Biochemistry. The Molecular Basis of Cell Structure and Function. New York: Worth. tr. 313.
  57. ^ Anthonie W.J. Muller (1995). “Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion”. Progress in Biophysics and Molecular Biology. 63 (2): 193–231. doi:10.1016/0079-6107(95)00004-7. PMID 7542789.
  58. ^ Anthonie W.J. Muller and Dirk Schulze-Makuch (2006). “Thermal energy and the origin of life”. Origins of Life and Evolution of Biospheres. 36 (2): 77–189. Bibcode:2006OLEB...36..177M. doi:10.1007/s11084-005-9003-4. PMID 16642267. S2CID 22179552.
  59. ^ Schmidt-Rohr, K. (2020). "Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics ACS Omega 5: 2221-2233. http://dx.doi.org/10.1021/acsomega.9b03352
  60. ^ Wimberly, Brian T.; Brodersen, Ditlev E.; Clemons, William M. Jr.; và đồng nghiệp (21 tháng 9 năm 2000). “Structure of the 30S ribosomal subunit”. Nature. 407 (6802): 327–339. Bibcode:2000Natur.407..327W. doi:10.1038/35030006. PMID 11014182. S2CID 4419944.
  61. ^ Zimmer, Carl (25 tháng 9 năm 2014). “A Tiny Emissary From the Ancient Past”. The New York Times. New York. Lưu trữ bản gốc ngày 27 tháng 9 năm 2014. Truy cập ngày 26 tháng 9 năm 2014.
  62. ^ Wade, Nicholas (4 tháng 5 năm 2015). “Making Sense of the Chemistry That Led to Life on Earth”. The New York Times. New York. Lưu trữ bản gốc ngày 9 tháng 7 năm 2017. Truy cập ngày 10 tháng 5 năm 2015.
  63. ^ Benner, S.A.; Bell, E.A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.-J.; Mojzsis, S.J.; Omran, A.; Pasek, M.A.; Trail, D. (2020). “When Did Life Likely Emerge on Earth in an RNA‐First Process?”. ChemSystemsChem. 2 (2). doi:10.1002/syst.201900035.
  64. ^ Yarus, Michael (tháng 4 năm 2011). “Getting Past the RNA World: The Initial Darwinian Ancestor”. Cold Spring Harbor Perspectives in Biology. 3 (4): a003590. doi:10.1101/cshperspect.a003590. PMC 3062219. PMID 20719875.
  65. ^ Fox, George.E. (9 tháng 6 năm 2010). “Origin and evolution of the ribosome”. Cold Spring Harbor Perspectives in Biology. 2 (9(a003483)): a003483. doi:10.1101/cshperspect.a003483. PMC 2926754. PMID 20534711.
  66. ^ Kühnlein, Alexandra; Lanzmich, Simon A.; Brun, Dieter (2 tháng 3 năm 2021). “tRNA sequences can assemble into a replicator”. eLife. 10. doi:10.7554/eLife.63431. PMC 7924937. PMID 33648631.
  67. ^ Maximilian, Ludwig (3 tháng 4 năm 2021). “Solving the Chicken-and-the-Egg Problem – "A Step Closer to the Reconstruction of the Origin of Life". SciTechDaily. Truy cập ngày 3 tháng 4 năm 2021.
  68. ^ Neveu, Marc; Kim, Hyo-Joong; Benner, Steven A. (22 tháng 4 năm 2013). “The 'Strong' RNA World Hypothesis: Fifty Years Old”. Astrobiology. 13 (4): 391–403. Bibcode:2013AsBio..13..391N. doi:10.1089/ast.2012.0868. PMID 23551238.
  69. ^ Gilbert, Walter (20 tháng 2 năm 1986). “Origin of life: The RNA world”. Nature. 319 (6055): 618. Bibcode:1986Natur.319..618G. doi:10.1038/319618a0. S2CID 8026658.
  70. ^ Gough, Evan (10 tháng 3 năm 2020). “Life Could be Common Across the Universe, Just Not in Our Region”. Universe Today. Truy cập ngày 15 tháng 3 năm 2020.
  71. ^ Totani, Tomonori (3 tháng 2 năm 2020). “Emergence of life in an inflationary universe”. Scientific Reports. 10 (1671): 1671. arXiv:1911.08092. Bibcode:2020NatSR..10.1671T. doi:10.1038/s41598-020-58060-0. PMC 6997386. PMID 32015390.
  72. ^ Boone, David R.; Castenholz, Richard W.; Garrity, George M. biên tập (2001). The Archaea and the Deeply Branching and Phototrophic Bacteria. Bergey's Manual of Systematic Bacteriology. Springer. ISBN 978-0-387-21609-6. Lưu trữ bản gốc ngày 25 tháng 12 năm 2014.[cần số trang]
  73. ^ Woese CR, Fox GE (1977). “Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proc Natl Acad Sci U S A. 74 (11): 5088–5090. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104. PMID 270744.
  74. ^ Valas RE, Bourne PE (2011). “The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon”. Biology Direct. 6: 16. doi:10.1186/1745-6150-6-16. PMC 3056875. PMID 21356104.
  75. ^ Cavalier-Smith T (2006). “Rooting the tree of life by transition analyses”. Biology Direct. 1: 19. doi:10.1186/1745-6150-1-19. PMC 1586193. PMID 16834776.
  76. ^ Ward, Peter Douglas (2005). Life as We Do Not Know it: The NASA Search for (and Synthesis Of) Alien Life. Viking Books. ISBN 978-0670034581.
  77. ^ Wade, Nicholas (25 tháng 7 năm 2016). “Meet Luca, the Ancestor of All Living Things”. The New York Times. Lưu trữ bản gốc ngày 28 tháng 7 năm 2016.
  78. ^ Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. (2016). “The physiology and habitat of the last universal common ancestor”. Nature Microbiology. 1 (9): 16116. doi:10.1038/NMICROBIOL.2016.116. PMID 27562259. S2CID 2997255.
  79. ^ Nature Vol 535, 28 July 2016,"Early Life Liked it Hot", p.468
  80. ^ Noller, Harry F. (tháng 4 năm 2012). “Evolution of protein synthesis from an RNA world”. Cold Spring Harbor Perspectives in Biology. 4 (4): a003681. doi:10.1101/cshperspect.a003681. PMC 3312679. PMID 20610545.
  81. ^ Koonin, Eugene V. (31 tháng 5 năm 2007). “The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life”. Biology Direct. 2: 15. doi:10.1186/1745-6150-2-15. PMC 1892545. PMID 17540027.
  82. ^ Hoffmann, Geoffrey W. (25 tháng 6 năm 1974). “On the origin of the genetic code and the stability of the translation apparatus”. Journal of Molecular Biology. 86 (2): 349–362. doi:10.1016/0022-2836(74)90024-2. PMID 4414916.
  83. ^ Orgel, Leslie E. (tháng 4 năm 1963). “The Maintenance of the Accuracy of Protein Synthesis and its Relevance to Ageing”. Proc. Natl. Acad. Sci. U.S.A. 49 (4): 517–521. Bibcode:1963PNAS...49..517O. doi:10.1073/pnas.49.4.517. PMC 299893. PMID 13940312.
  84. ^ Hoffmann, Geoffrey W. (tháng 10 năm 1975). “The Stochastic Theory of the Origin of the Genetic Code”. Annual Review of Physical Chemistry. 26: 123–144. Bibcode:1975ARPC...26..123H. doi:10.1146/annurev.pc.26.100175.001011.
  85. ^ Chaichian, Rojas & Tureanu 2014, tr. 353–364
  86. ^ Plasson, Raphaël; Kondepudi, Dilip K.; Bersini, Hugues; và đồng nghiệp (tháng 8 năm 2007). “Emergence of homochirality in far-from-equilibrium systems: Mechanisms and role in prebiotic chemistry”. Chirality. 19 (8): 589–600. doi:10.1002/chir.20440. PMID 17559107. "Special Issue: Proceedings from the Eighteenth International Symposium on Chirality (ISCD-18), Busan, Korea, 2006"
  87. ^ Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel (2017). “Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality” (PDF). Physical Review E. 95 (3): 032407. Bibcode:2017PhRvE..95c2407J. doi:10.1103/PhysRevE.95.032407. PMID 28415353.
  88. ^ Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel (2015). “Noise-induced mechanism for biological homochirality of early life self-replicators”. Physical Review Letters. 115 (15): 158101. arXiv:1507.00044. Bibcode:2015PhRvL.115o8101J. doi:10.1103/PhysRevLett.115.158101. PMID 26550754. S2CID 9775791.
  89. ^ Frank, F.C. (1953). “On spontaneous asymmetric synthesis”. Biochimica et Biophysica Acta. 11 (4): 459–463. doi:10.1016/0006-3002(53)90082-1. PMID 13105666.
  90. ^ Clark, Stuart (July–August 1999). “Polarized Starlight and the Handedness of Life”. American Scientist. 87 (4): 336. Bibcode:1999AmSci..87..336C. doi:10.1511/1999.4.336.
  91. ^ Shibata, Takanori; Morioka, Hiroshi; Hayase, Tadakatsu; và đồng nghiệp (17 tháng 1 năm 1996). “Highly Enantioselective Catalytic Asymmetric Automultiplication of Chiral Pyrimidyl Alcohol”. Journal of the American Chemical Society. 118 (2): 471–472. doi:10.1021/ja953066g.
  92. ^ Soai, Kenso; Sato, Itaru; Shibata, Takanori (2001). “Asymmetric autocatalysis and the origin of chiral homogeneity in organic compounds”. The Chemical Record. 1 (4): 321–332. doi:10.1002/tcr.1017. PMID 11893072.
  93. ^ Hazen 2005, tr. 184
  94. ^ Meierhenrich, Uwe (2008). Amino acids and the asymmetry of life caught in the act of formation. Berlin: Springer. tr. 76–79. ISBN 978-3540768869.
  95. ^ Mullen, Leslie (5 tháng 9 năm 2005). “Building Life from Star-Stuff”. Astrobiology Magazine. Lưu trữ bản gốc ngày 14 tháng 7 năm 2015. Truy cập ngày 15 tháng 6 năm 2015.
  96. ^ Rabie, Passant (6 tháng 7 năm 2020). “Astronomers Have Found The Source Of Life In The Universe”. Inverse. Truy cập ngày 7 tháng 7 năm 2020.
  97. ^ Marigo, Paola; và đồng nghiệp (6 tháng 7 năm 2020). “Carbon star formation as seen through the non-monotonic initial–final mass relation”. Nature Astronomy. 152 (11): 1102–1110. arXiv:2007.04163. Bibcode:2020NatAs...4.1102M. doi:10.1038/s41550-020-1132-1. S2CID 220403402. Truy cập ngày 7 tháng 7 năm 2020.
  98. ^ “WMAP- Life in the Universe”.
  99. ^ Formation of Solar Systems: Solar Nebular Theory. University of Massachusetts Amherst, Department of Astronomy. Accessed on 27 September 2019.
  100. ^ Fesenkov 1959, tr. 9
  101. ^ Kasting, James F. (12 tháng 2 năm 1993). “Earth's Early Atmosphere” (PDF). Science. 259 (5097): 920–926. Bibcode:1993Sci...259..920K. doi:10.1126/science.11536547. PMID 11536547. S2CID 21134564. Bản gốc (PDF) lưu trữ ngày 10 tháng 10 năm 2015. Truy cập ngày 28 tháng 7 năm 2015.
  102. ^ Morse, John (tháng 9 năm 1998). “Hadean Ocean Carbonate Geochemistry”. Aquatic Geochemistry. 4 (3/4): 301–319. Bibcode:1998MinM...62.1027M. doi:10.1023/A:1009632230875. S2CID 129616933.
  103. ^ a b c Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên Follmann2009
  104. ^ Morse, John W.; MacKenzie, Fred T. (1998). “Hadean Ocean Carbonate Geochemistry”. Aquatic Geochemistry. 4 (3–4): 301–319. Bibcode:1998MinM...62.1027M. doi:10.1023/A:1009632230875. S2CID 129616933.
  105. ^ Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (11 tháng 1 năm 2001). “Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago” (PDF). Nature. 409 (6817): 175–178. Bibcode:2001Natur.409..175W. doi:10.1038/35051550. PMID 11196637. S2CID 4319774. Lưu trữ (PDF) bản gốc ngày 5 tháng 6 năm 2015. Truy cập ngày 3 tháng 6 năm 2015.
  106. ^ Rosing, Minik T.; Bird, Dennis K.; Sleep, Norman H.; và đồng nghiệp (22 tháng 3 năm 2006). “The rise of continents – An essay on the geologic consequences of photosynthesis”. Palaeogeography, Palaeoclimatology, Palaeoecology. 232 (2–4): 99–113. Bibcode:2006PPP...232...99R. doi:10.1016/j.palaeo.2006.01.007. Lưu trữ (PDF) bản gốc ngày 14 tháng 7 năm 2015. Truy cập ngày 8 tháng 6 năm 2015.
  107. ^ Gomes, Rodney; Levison, Hal F.; Tsiganis, Kleomenis; Morbidelli, Alessandro (26 tháng 5 năm 2005). “Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets”. Nature. 435 (7041): 466–469. Bibcode:2005Natur.435..466G. doi:10.1038/nature03676. PMID 15917802.
  108. ^ Sleep, Norman H.; Zahnle, Kevin J.; Kasting, James F.; và đồng nghiệp (9 tháng 11 năm 1989). “Annihilation of ecosystems by large asteroid impacts on early Earth”. Nature. 342 (6246): 139–142. Bibcode:1989Natur.342..139S. doi:10.1038/342139a0. PMID 11536616. S2CID 1137852.
  109. ^ Chyba, Christopher; Sagan, Carl (9 tháng 1 năm 1992). “Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life”. Nature. 355 (6356): 125–132. Bibcode:1992Natur.355..125C. doi:10.1038/355125a0. PMID 11538392. S2CID 4346044.
  110. ^ Furukawa, Yoshihiro; Sekine, Toshimori; Oba, Masahiro; và đồng nghiệp (tháng 1 năm 2009). “Biomolecule formation by oceanic impacts on early Earth”. Nature Geoscience. 2 (1): 62–66. Bibcode:2009NatGe...2...62F. doi:10.1038/NGEO383.
  111. ^ Maher, Kevin A.; Stevenson, David J. (18 tháng 2 năm 1988). “Impact frustration of the origin of life”. Nature. 331 (6157): 612–614. Bibcode:1988Natur.331..612M. doi:10.1038/331612a0. PMID 11536595. S2CID 4284492.
  112. ^ Mann, Adam (24 tháng 1 năm 2018). “Bashing holes in the tale of Earth's troubled youth”. Nature (bằng tiếng Anh). 553 (7689): 393–395. Bibcode:2018Natur.553..393M. doi:10.1038/d41586-018-01074-6.
  113. ^ Davies 1999, tr. 155
  114. ^ Bock & Goode 1996
  115. ^ Mortillaro, Nicole (1 tháng 3 năm 2017). “Oldest traces of life on Earth found in Quebec, dating back roughly 3.8 Gya”. CBC News. Lưu trữ bản gốc ngày 1 tháng 3 năm 2017. Truy cập ngày 2 tháng 3 năm 2017.
  116. ^ Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; và đồng nghiệp (tháng 1 năm 2014). “Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks”. Nature Geoscience. 7 (1): 25–28. Bibcode:2014NatGe...7...25O. doi:10.1038/ngeo2025.
  117. ^ Borenstein, Seth (13 tháng 11 năm 2013). “Oldest fossil found: Meet your microbial mom”. Excite. Yonkers, NY: Mindspark Interactive Network. Associated Press. Lưu trữ bản gốc ngày 29 tháng 6 năm 2015. Truy cập ngày 2 tháng 6 năm 2015.
  118. ^ Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (16 tháng 11 năm 2013). “Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Gyo Dresser Formation, Pilbara, Western Australia”. Astrobiology. 13 (12): 1103–1124. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC 3870916. PMID 24205812.
  119. ^ Wade, Nicholas (31 tháng 8 năm 2016). “World's Oldest Fossils Found in Greenland”. The New York Times. Lưu trữ bản gốc ngày 31 tháng 8 năm 2016. Truy cập ngày 31 tháng 8 năm 2016.
  120. ^ Davies 1999
  121. ^ Hassenkam, T.; Andersson, M.P.; Dalby, K.N.; Mackenzie, D.M.A.; Rosing, M.T. (2017). “Elements of Eoarchean life trapped in mineral inclusions”. Nature. 548 (7665): 78–81. Bibcode:2017Natur.548...78H. doi:10.1038/nature23261. PMID 28738409. S2CID 205257931.
  122. ^ Pearlman, Jonathan (13 tháng 11 năm 2013). “Oldest signs of life on Earth found”. The Daily Telegraph. London. Lưu trữ bản gốc ngày 16 tháng 12 năm 2014. Truy cập ngày 15 tháng 12 năm 2014.
  123. ^ O'Donoghue, James (21 tháng 8 năm 2011). “Oldest reliable fossils show early life was a beach”. New Scientist. 211: 13. doi:10.1016/S0262-4079(11)62064-2. Lưu trữ bản gốc ngày 30 tháng 6 năm 2015.
  124. ^ Wacey, David; Kilburn, Matt R.; Saunders, Martin; và đồng nghiệp (tháng 10 năm 2011). “Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia”. Nature Geoscience. 4 (10): 698–702. Bibcode:2011NatGe...4..698W. doi:10.1038/ngeo1238.
  125. ^ Borenstein, Seth (19 tháng 10 năm 2015). “Hints of life on what was thought to be desolate early Earth”. AP News. Associated Press. Truy cập ngày 9 tháng 10 năm 2018.
  126. ^ Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark; và đồng nghiệp (19 tháng 10 năm 2015). “Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”. Proc. Natl. Acad. Sci. U.S.A. 112 (47): 14518–14521. Bibcode:2015PNAS..11214518B. doi:10.1073/pnas.1517557112. PMC 4664351. PMID 26483481. Early edition, published online before print.
  127. ^ Wolpert, Stuart (19 tháng 10 năm 2015). “Life on Earth likely started at least 4.1 billion years ago – much earlier than scientists had thought”. ULCA. Lưu trữ bản gốc ngày 20 tháng 10 năm 2015. Truy cập ngày 20 tháng 10 năm 2015.
  128. ^ Baumgartner, Rafael; Van Kranendonk, Martin; Wacey, David; Fiorentini, Marco; Saunders, Martin; Caruso, Caruso; Pages, Anais; Homann, Martin; Guagliardo, Paul (2019). “Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life” (PDF). Geology. 47 (11): 1039–1043. Bibcode:2019Geo....47.1039B. doi:10.1130/G46365.1.
  129. ^ Djokic, Tara; Van Kranendonk, Martin; Cambell, Kathleen; Walter, Malcolm (2017). “Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits”. Nature Communications. 3.


Lỗi chú thích: Đã tìm thấy thẻ <ref> với tên nhóm “lower-alpha”, nhưng không tìm thấy thẻ tương ứng <references group="lower-alpha"/> tương ứng, hoặc thẻ đóng </ref> bị thiếu