Định lý Rolle

Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướng Bước tới tìm kiếm
Các chủ đề trong giải tích
Định lý cơ bản
Giới hạn hàm số
Hàm liên tục
Định lý giá trị trung bình

Trong vi tích phân, định lý Rolle phát biểu rằng bất cứ hàm giá trị thực lấy vi phân được đạt giá trị bằng nhau tại hai điểm phân biệt phải có điểm tĩnh lại đâu đó giữa chúng; đó là, một điểm nơi đạo hàm bậc nhất (hệ số góc của đường tiếp tuyến với đồ thị của hàm) bằng 0.

Chứng minh định lý Rolle phát biểu dưới dạng trên tương đối phức tạp. Thường ta phải sử dụng định lý Fermat. Tuy nhiên, ta có thể phát biểu lại định lý Rolle dưới dạng thu hẹp hơn. Khi đó việc chứng minh là đơn giản.

Định lý Rolle thu hẹp[sửa | sửa mã nguồn]

Nếu hàm số thực y = f(x) liên tục trên đoạn [a; b], (a < b) có đạo hàm liên tục trên khoảng (a; b) và f(a) = f(b) thì tồn tại c ∈ (a; b) sao cho f′(c) = 0.

Chứng minh[sửa | sửa mã nguồn]

Giả sử không tồn tại c ∈ (ab) để f′(c) = 0, tức là f′(x) ≠ 0 ∀x ∈ (ab). Khi đó, do f′(x) liên tục trên (ab) nên f′(x) không đổi dấu trên (ab).

Không giảm tính tổng quát, giả sử f′(x) > 0 ∀x ∈ (a; b). Mà f(x) liên tục trên [a; b] nên f(x) đồng biến trên [ab], suy ra f(a) < f(b), trái với giả thiết f(a) = f(b).

Điều này chứng tỏ giả sử ban đầu của chúng ta là sai. Vậy tồn tại c ∈ (a; b) sao cho f′(c) = 0. Bài toán đã được chứng minh.

Tham khảo[sửa | sửa mã nguồn]

Liên kết ngoài[sửa | sửa mã nguồn]