Đẳng thức lượng giác

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Trong toán học, các đẳng thức lượng giác là các phương trình chứa các hàm lượng giác, đúng với một dải lớn các giá trị của biến số.

Các đẳng thức này hữu ích cho việc rút gọn các biểu thức chứa hàm lượng giác. Ví dụ trong việc tính tích phân với các hàm không phải là lượng giác: có thể thay chúng bằng các hàm lượng giác và dùng các đẳng thức lượng giác để đơn giản hóa phép tính.

Định nghĩa[sửa | sửa mã nguồn]

Xem thêm các hàm lượng giác
 \tan (x) = \frac {\sin (x)} {\cos(x)} \qquad \operatorname{cot}(x) = \frac {\cos (x)} {\sin(x)} = \frac{1} {\tan(x)}
 \operatorname{sin}(x) = \frac{1} {\cos(x)} \qquad \operatorname{cos}(x) = \frac{1} {\sin(x)}

Tuần hoàn, đối xứng và tịnh tiến[sửa | sửa mã nguồn]

Các đẳng thức sau có thể dễ thấy trên vòng tròn đơn vị:

Tuần hoàn (k nguyên) Đối xứng: Tịnh tiến
 \sin(x) = \sin(x + 2k\pi) \,  \sin(-x) = -\sin(x) \,  \sin(x) = \cos\left(\frac{\pi}{2} - x\right)
 \cos(x) = \cos(x + 2k\pi) \,  \cos(-x) =\; \cos(x) \,  \cos(x) = \sin\left(\frac{\pi}{2}-x\right)
 \tan(x) = \tan(x + k\pi)  \,  \tan(-x) = -\tan(x) \,  \tan(x) = \cot\left(\frac{\pi}{2} - x\right)
 \cot(-x) = -\cot(x) \,

Đẳng thức sau cũng đôi khi hữu ích:  a\sin x+b\cos x=\sqrt{a^2+b^2}\cdot\sin(x+\varphi)

với


  \varphi=
  \left\{
   \begin{matrix}
    {\rm arctan}(b/a),&&\mbox{n}\acute{\hat{\mbox{e}}}\mbox{u}\ a\ge0; \;
   \\
    \pi+{\rm arctan}(b/a),&&\mbox{n}\acute{\hat{\mbox{e}}}\mbox{u}\ a<0. \;
   \end{matrix}
  \right. \;

Đẳng thức Pytago[sửa | sửa mã nguồn]

Các đẳng thức sau dựa vào định lý Pytago.

 \sin^2(x) + \cos^2(x) = 1 \;
 \tan^2(x) + 1 = \frac{1} {\cos^2(x)}
 1 + \cot^2(x) = \frac{1} {\sin^2(x)}

Đẳng thức thứ 2 và 3 có thể suy ra từ đẳng thức đầu bởi chia nó cho cos²(x) và sin²(x).

Tổng và hiệu của góc[sửa | sửa mã nguồn]

Xem thêm Định lý Ptolemy

Cách chứng minh nhanh các công thức này là dùng công thức Euler.

\sin(x \pm y) = \sin(x) \cos(y) \pm \cos(x) \sin(y)\,
\cos(x \pm y) = \cos(x) \cos(y) \mp \sin(x) \sin(y)\,
\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)}
\ cot(x \pm y) = \frac {1 \mp \tan(x)\tan(y)}{\tan(x) \pm \tan(y)}
{\rm c\imath s}(x+y)={\rm c\imath s}(x)\,{\rm c\imath s}(y)
{\rm c\imath s}(x-y)={{\rm c\imath s}(x)\over{\rm c\imath s}(y)}

với

{\rm c\imath s}(x)=e^{\imath x}=\cos(x)+\imath\sin(x)\,

\imath =\sqrt{-1}.\,

Công thức góc bội[sửa | sửa mã nguồn]

Bội hai[sửa | sửa mã nguồn]

Các công thức sau có thể suy ra từ các công thức trên. Cũng có thể dùng công thức de Moivre với n = 2.

\sin(2x) = 2 \sin (x) \cos(x) \,
\cos(2x) = \cos^2(x) - \sin^2(x)
:= 2 \cos^2(x) - 1
= 1 - 2 \sin^2(x) \,
 \tan(2x) = \frac{2 \tan (x)} {1 - \tan^2(x)}
 \cot(2x) = \frac{\cot^2(x) - 1}{2\cot (x)}

Công thức góc kép có thể dùng để tìm bộ ba Pytago. Nếu (a, b, c) là bộ ba Pytago thì (a2 − b2, 2ab, c2) cũng vậy.

\cos(nx)= 2\cos((n-1)x)\cos(x)-\cos((n-2)x)

Bội ba[sửa | sửa mã nguồn]

Cơ bản[sửa | sửa mã nguồn]

Ví dụ của trường hợp n = 3:

\sin(3x)= 3\sin x - 4\sin^3x
\cos(3x)= 4\cos^3x-3\cos x

Nâng cao[sửa | sửa mã nguồn]

\sin(3x) = 4\sin x \sin(60^o - x)\sin(60^o +x)
\cos(3x) = 4\cos x \cos(60^o - x) \cos(60^o +x)
\tan(3x) = \tan x \tan(60^o - x) \tan(60^o +x)

Công thức hạ bậc[sửa | sửa mã nguồn]

Giải các phương trình ở công thức bội cho cos2(x) và sin2(x), thu được:

\sin^2(x) = {1 - \cos(2x) \over 2}
\cos^2(x) = {1 + \cos(2x) \over 2}
\tan^2(x) = {1 - \cos(2x) \over 1 + \cos(2x)}
\sin^2(x) \cos^2(x) = {1 - \cos(4 x) \over 8}
\sin^3(x) = \frac{3 \sin(x) - \sin(3 x)}{4}
\cos^3(x) = \frac{3 \cos(x) + \cos(3 x)}{4}
\sin^4(x) = \frac{1 \cos(4x) - 4\cos(2 x) + 3}{8}
\cos^4(x) = \frac{1 \cos(4x) + 4\cos(2 x) + 3}{8}

Công thức góc chia đôi[sửa | sửa mã nguồn]

Thay x/2 cho x trong công thức trên, rồi giải phương trình cho cos(x/2) và sin(x/2) để thu được:

\sin\left(\frac{x}{2}\right) =  \pm\, \sqrt{\frac{1 - \cos(x)}{2}}
\cos\left(\frac{x}{2}\right) =  \pm\, \sqrt{\frac{1 + \cos(x)}{2}}

Dẫn đến:

 \tan\left(\frac{x}{2}\right) = {\sin (x/2) \over \cos (x/2)} = \pm\, \sqrt{1 - \cos x \over 1 + \cos x}. \qquad \qquad (1)

Nhân với mẫu số và tử số 1 + cos x, rồi dùng định lý Pytago để đơn giản hóa:

 \tan\left(\frac{x}{2}\right) = \pm\, \sqrt{(1 - \cos x) (1 + \cos x) \over (1 + \cos x) (1 + \cos x)} = \pm\, \sqrt{1 - \cos^2 x \over (1 + \cos x)^2}
 = {\sin x \over 1 + \cos x}.

Tương tự, lại nhân với mẫu số và tử số của phương trình (1) bởi 1 − cos x, rồi đơn giản hóa:

 \tan\left(\frac{x}{2}\right) = \pm\, \sqrt{(1 - \cos x) (1 - \cos x) \over (1 + \cos x) (1 - \cos x)} = \pm\, \sqrt{(1 - \cos x)^2 \over (1 - \cos^2 x)}
 = {1 - \cos x \over \sin x}.

Suy ra:

\tan\left(\frac{x}{2}\right) = \frac{\sin(x)}{1 + \cos(x)} = \frac{1-\cos(x)}{\sin(x)}.

Nếu

t = \tan\left(\frac{x}{2}\right),

thì:

    \sin(x) = \frac{2t}{1 + t^2}   and   \cos(x) = \frac{1 - t^2}{1 + t^2}   and   e^{i x} = \frac{1 + i t}{1 - i t}.

Phương pháp dùng t thay thế như trên hữu ích trong giải tích để chuyển các tỷ lệ thức chứa sin(x) và cos(x) thành hàm của t. Cách này giúp tính đạo hàm của biểu thức dễ dàng.

Biến tích thành tổng[sửa | sửa mã nguồn]

Dùng công thức tổng và hiệu góc bên trên có thể suy ra.

\sin\left (x\right) \sin\left (y\right) =- {\cos\left (x + y\right) - \cos\left (x - y\right) \over 2} \;
\cos\left (x\right) \cos\left (y\right) = {\cos\left (x + y\right) +  \cos\left (x - y\right)\over 2} \;
\sin\left (x\right) \cos\left (y\right) = {\sin\left (x + y\right) + \sin\left (x - y\right) \over 2} \;

Biển tổng thành tích[sửa | sửa mã nguồn]

Thay x bằng (x + y) / 2 và y bằng (xy) / 2, suy ra:

\sin(x) + \sin(y) = 2 \sin\left(\frac{x + y}{2} \right) \cos\left(\frac{x - y}{2} \right) \;
 \sin(x) - \sin(y) =  2 \cos\left(\frac{x + y}{2} \right) \sin\left({x - y\over 2}\right) \;
\cos(x) + \cos(y) = 2 \cos\left(\frac{x + y}{2} \right) \cos\left(\frac{x - y}{2} \right) \;
 \cos(x) - \cos(y) = - 2 \sin\left({x + y \over 2}\right) \sin\left({x - y \over 2}\right) \;

Hàm lượng giác ngược[sửa | sửa mã nguồn]

 \arcsin(x)+\arccos(x)=\pi/2\;
 \arctan(x)+\arccot(x)=\pi/2.\;
\arctan(x)+\arctan(1/x)=\left\{\begin{matrix} \pi/2, &\mbox{n}\acute{\hat{\mbox{e}}}\mbox{u}\ x > 0 \\  -\pi/2, &\mbox{n}\acute{\hat{\mbox{e}}}\mbox{u}\ x < 0 \end{matrix}\right..
\arctan(x)+\arctan(y)=\arctan\left(\frac{x+y}{1-xy}\right) \;
\arctan(x)-\arctan(y)=\arctan\left(\frac{x-y}{1+xy}\right) \;
\sin(\arccos(x))=\sqrt{1-x^2} \,
\cos(\arcsin(x))=\sqrt{1-x^2} \,
\sin(\arctan(x))=\frac{x}{\sqrt{1+x^2}}
\cos(\arctan(x))=\frac{1}{\sqrt{1+x^2}}
\tan(\arcsin (x))=\frac{x}{\sqrt{1 - x^2}}
\tan(\arccos (x))=\frac{\sqrt{1 - x^2}}{x}

Dạng số phức[sửa | sửa mã nguồn]

\cos(x) = \frac{e^{ix} + e^{-ix}}{2} \;
\sin(x) = \frac{e^{ix} - e^{-ix}}{2i} \;

với  i^{2}=-1.\,

Tích vô hạn[sửa | sửa mã nguồn]

Trong các ứng dụng với hàm đặc biệt, các tích vô hạn sau có ích:

\sin x = x \prod_{n = 1}^\infty\left(1 - \frac{x^2}{\pi^2 n^2}\right)
\sinh x = x \prod_{n = 1}^\infty\left(1 + \frac{x^2}{\pi^2 n^2}\right)
\cos x = \prod_{n = 1}^\infty\left(1 - \frac{x^2}{\pi^2(n - \frac{1}{2})^2}\right)
\cosh x = \prod_{n = 1}^\infty\left(1 + \frac{x^2}{\pi^2(n - \frac{1}{2})^2}\right)
\frac{\sin x}{x} = \prod_{n = 1}^\infty\cos\left(\frac{x}{2^n}\right)

Đẳng thức số[sửa | sửa mã nguồn]

Cơ bản[sửa | sửa mã nguồn]

Richard Feynman từ nhỏ đã nhớ đẳng thức sau:

\cos 20^\circ\cdot\cos 40^\circ\cdot\cos 80^\circ=\frac{1}{8}.

Tuy nhiên nó là trường hợp riêng của:

\prod_{j=0}^{k-1}\cos(2^j x)=\frac{\sin(2^k x)}{2^k\sin(x)}.

Đẳng thức số sau chưa được tổng quát hóa với biến số:

\cos 24^\circ+\cos 48^\circ+\cos 96^\circ+\cos 168^\circ=\frac{1}{2}.

Đẳng thức sau cho thấy đặc điểm của số 21:

 \cos\left( \frac{2\pi}{21}\right)
  \,+\, \cos\left(2\cdot\frac{2\pi}{21}\right)   
  \,+\, \cos\left(4\cdot\frac{2\pi}{21}\right)
 
  \,+\, \cos\left(5\cdot\frac{2\pi}{21}\right)
  \,+\, \cos\left(8\cdot\frac{2\pi}{21}\right)
  \,+\, \cos\left(10\cdot\frac{2\pi}{21}\right)=\frac{1}{2}.

Một cách tính pi có thể sựa vào đẳng thức số sau, do John Machin tìm thấy:

\frac{\pi}{4} = 4 \arctan\frac{1}{5} - \arctan\frac{1}{239}

hay dùng công thức Euler:

\frac{\pi}{4} = 5 \arctan\frac{1}{7} + 2 \arctan\frac{3}{79}.

Một số đẳng thức khác:


\begin{matrix}
\sin 0 & = & \sin 0^\circ & = & 0 & = & \cos 90^\circ &  =  & \cos \left(\frac {\pi} {2} \right) \\  \\
\sin \left(\frac {\pi} {6} \right) & = & \sin 30^\circ & = & 1/2 & = & \cos 60^\circ & = & \cos \left(\frac {\pi} {3} \right) \\  \\
\sin \left(\frac {\pi} {4} \right) & = & \sin 45^\circ & = & \sqrt{2}/2 & = & \cos 45^\circ & = & \cos \left(\frac {\pi} {4} \right) \\  \\
\sin \left(\frac {\pi} {3} \right) & = & \sin 60^\circ & = & \sqrt{3}/2 & = & \cos 30^\circ & = & \cos \left(\frac {\pi} {6} \right) \\  \\
\sin \left(\frac {\pi} {2} \right) & = & \sin 90^\circ & = & 1 & = & \cos 0^\circ & = & \cos 0
\end{matrix}
\sin{\frac{\pi}{7}}=\frac{\sqrt{7}}{6}-
\frac{\sqrt{7}}{189} \sum_{j=0}^{\infty} \frac{(3j+1)!}{189^j j!\,(2j+2)!}
\!
\sin{\frac{\pi}{18}}=
\frac{1}{6} \sum_{j=0}^{\infty} \frac{(3j)!}{27^j j!\,(2j+1)!}
\!

Dùng tỷ lệ vàng φ:

\cos \left(\frac {\pi} {5} \right) = \cos 36^\circ={\sqrt{5}+1 \over 4} = \phi /2
\sin \left(\frac {\pi} {10} \right) = \sin 18^\circ = {\sqrt{5}-1 \over 4}  = {\varphi - 1 \over 2} = {1 \over 2\varphi}

- -

Nâng cao[sửa | sửa mã nguồn]

-

  • -\frac{\sin (\frac{\pi }{7})}{\sin ^2(\frac{2 \pi }{7})}+\frac{\sin (\frac{3 \pi }{7})}{\sin ^2(\frac{\pi }{7})}+\frac{\sin (\frac{2 \pi }{7})}{\sin
 
-	
^2(\frac{3 \pi }{7})}=2 \sqrt{7}

-

  • \frac{\sin ^2(\frac{\pi }{7})}{\sin ^4(\frac{2 \pi }{7})}+\frac{\sin ^2(\frac{3 \pi }{7})}{\sin ^4(\frac{\pi }{7})}+\frac{\sin ^2(\frac{2 \pi }{7})}{\sin
 
-	
^4(\frac{3 \pi }{7})}=28

-

  • \frac{\sin ^2(\frac{\pi }{7})}{\sin ^4(\frac{2 \pi }{7})}(\frac{4 \sin (\frac{\pi }{7})}{\sin (\frac{2 \pi }{7})}-\frac{2 \sin (\frac{3 \pi }{7})}{\sin
 
-	
(\frac{\pi }{7})}) + \frac{\sin ^2(\frac{3 \pi }{7})}{\sin ^4(\frac{\pi }{7})}(\frac{2 \sin (\frac{2 \pi }{7})}{\sin (\frac{3 \pi }{7})}+\frac{4 \sin (\frac{3 \pi }{7})}{\sin
 
-	
(\frac{\pi }{7})}) -\frac{\sin ^2(\frac{2 \pi }{7}) }{\sin ^4(\frac{3 \pi }{7})}(\frac{2 \sin (\frac{\pi }{7})}{\sin (\frac{2 \pi }{7})}+\frac{4
 
-	
\sin (\frac{2 \pi }{7})}{\sin (\frac{3 \pi }{7})})=280

-

  • \cos (\frac{\pi }{17})=\frac{1}{8}\sqrt (2 (2 \sqrt{\sqrt{ \frac{17(17-\sqrt{17})}{2}}-\sqrt{\frac{17-\sqrt{17}}{2}}-4 \sqrt{34+2 \sqrt{17}}+3 \sqrt{17}+17}+\sqrt{34-2 \sqrt{17}}+\sqrt{17}+15))

-

  • \tan (\frac{\pi }{120})=\sqrt{\frac{8-\sqrt{2 (2-\sqrt{3}) (3-\sqrt{5})}-\sqrt{2 (2+\sqrt{3}) (5+\sqrt{5})}}{8+\sqrt{2 (2-\sqrt{3}) (3-\sqrt{5})}+\sqrt{2
 
-	
(2+\sqrt{3}) (5+\sqrt{5})}}}

-

  • \cos (\frac{\pi }{240})=\frac{1}{16} (\sqrt{2-\sqrt{2+\sqrt{2}}} (\sqrt{2 (5+\sqrt{5})}+\sqrt{3}-\sqrt{15})+\sqrt{\sqrt{2+\sqrt{2}}+2} (\sqrt{6 (5+\sqrt{5})}+\sqrt{5}-1))

-

  •  \frac{\pi }{4}=\cot ^{-1}(2)+\cot ^{-1}(3)

-

  •  \frac{\pi }{4}=\cot ^{-1}(2)+\cot ^{-1}(5)+\cot^{-1}(8)

-

  • \frac{\pi }{4}=2\cot ^{-1}(3)+\cot ^{-1}(7)

-

  •  \frac{\pi }{4}=3\cot ^{-1}(4)+\cot ^{-1}(\frac{99}{5})

-

  • \frac{\pi }{4}=4\cot ^{-1}(5)-\cot ^{-1}(239)

-

  •  \frac{\pi }{4}=4\cot ^{-1}(5)-\cot ^{-1}(70)+\cot^{-1}(99) \frac{\pi }{4}=5\cot ^{-1}(6)-\cot^{-1}(\frac{503}{16})-\cot ^{-1}(117)

-

  •  \frac{\pi }{4}=5\cot ^{-1}(7)+2\cot ^{-1}(\frac{79}{3}) \frac{\pi }{4}=6\cot ^{-1}(8)+\cot ^{-1}(\frac{99}{5})-3\cot ^{-1}(268)

-

  •  \frac{\pi }{4}=8 \cot ^{-1}(10)-\cot ^{-1}(239)-4 \cot ^{-1}(515) \frac{\pi }{4}=8\cot ^{-1}(10)-2\cot ^{-1}(\frac{452761}{2543})-\cot ^{-1}(1393)

-

  •  \frac{\pi }{4}=8\cot ^{-1}(10)-\cot ^{-1}(100)-\cot^{-1}(515)-\cot^{-1}(\frac{371498882}{3583}) \frac{\pi }{4}=12\cot^{-1}(18)+3\cot ^{-1}(70)+5\cot ^{-1}(99)+8\cot ^{-1}(307)

-

  • \frac{\pi }{4}=12\cot ^{-1}(18)+8\cot ^{-1}(99)+3\cot^{-1}(239)+8\cot^{-1}(307)

Giải tích[sửa | sửa mã nguồn]

Các công thức trong giải tích sau dùng góc đo bằng radian

\lim_{x\rightarrow 0}\frac{\sin(x)}{x}=1,
\lim_{x\rightarrow 0}\frac{1-\cos(x)}{x}=0,
{d \over dx}\sin(x) = \cos(x)

Các đẳng thức sau có thể suy ra từ trên và các quy tắc của đạo hàm:

{d \over dx}\cos(x) = -\sin(x)
{d \over dx}\tan(x) = \sec^2(x)
{d \over dx}\cot(x) = -\csc^2(x)
{d \over dx}\sec(x) = \sec(x) \tan(x)
{d \over dx}\csc(x) = - \csc(x)\cot(x)
{d \over dx}\arcsin(x)=\frac{1}{\sqrt{1-x^2}}
{d \over dx}\arctan(x)=\frac{1}{1+x^2}

Các biểu thức về tính tích phân có thể tìm tại danh sách tích phân với hàm lượng giácdanh sách tích phân với hàm lượng giác ngược.

Hàm lượng giác nghịch đảo[sửa | sửa mã nguồn]

Các hàm lượng giác tuần hoàn, do vậy để tìm hàm nghịch đảo, cần giới hạn miền của hàm. Dươi đây là định nghĩa các hàm lượng giác nghịch đảo:

Giới hạn miền Định nghĩa
-π/2 < y < π/2 y = arcsin(x) khi và chỉ khi x = sin(y)
0 < y < π y = arccos(x) khi và chỉ khi x = cos(y)
-π/2 < y < π/2 y = arctan(x) khi và chỉ khi x = tan(y)
-π/2 < y < π/2 và y ≠ 0 y = arccot(x) khi và chỉ khi x = cot(y)
0 < y < π và y ≠ π/2 y = arcsec(x) khi và chỉ khi x = sec(y)
-π/2 < y < π/2 và y ≠ 0 y = arccsc(x) khi và chỉ khi x = csc(y)

Các hàm nghịch đảo có thể được ký hiệu là sin−1 hay cos−1 thay cho arcsin và arccos. Việc dùng ký hiệu mũ có thể gây nhầm lẫn với hàm mũ của hàm lượng giác.

Các hàm lượng giác nghịch đảo cũng có thể được định nghĩa bằng chuỗi vô hạn:


\begin{matrix}
\arcsin z & = & z + \left(\frac {1} {2} \right) \frac {z^3} {3} + \left(\frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left(\frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots\\
& = & \sum_{n=0}^\infty \left(\frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{2n+1}} {(2n+1)}
\end{matrix}
\, \quad \left| z \right| < 1

\begin{matrix}
\arccos z & = & \frac {\pi} {2} - \arcsin z \\
& = & \frac {\pi} {2} - (z + \left(\frac {1} {2} \right) \frac {z^3} {3} + \left(\frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left(\frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots) \\
& = & \frac {\pi} {2} - \sum_{n=0}^\infty \left(\frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{2n+1}} {(2n+1)}
\end{matrix}
\, \quad \left| z \right| < 1

\begin{matrix}
\arctan z & = & z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots \\
& = & \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}
\end{matrix}
\, \quad \left| z \right| < 1

\begin{matrix}
\arccsc z & = & \arcsin\left(z^{-1}\right) \\
& = & z^{-1} + \left(\frac {1} {2} \right) \frac {z^{-3}} {3} + \left(\frac {1 \cdot 3} {2 \cdot 4 } \right) \frac {z^{-5}} {5} + \left(\frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {z^{-7}} {7} +\cdots \\
& = & \sum_{n=0}^\infty \left(\frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{-(2n+1)}} {2n+1}\end{matrix}
\, \quad \left| z \right| > 1

\begin{matrix}
\arcsec z & = & \arccos\left(z^{-1}\right) \\
& = & \frac {\pi} {2} - (z^{-1} + \left(\frac {1} {2} \right) \frac {z^{-3}} {3} + \left(\frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^{-5}} {5} + \left(\frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^{-7}} {7} + \cdots) \\
& = & \frac {\pi} {2} - \sum_{n=0}^\infty \left(\frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{-(2n+1)}} {(2n+1)} 
\end{matrix}
\, \quad \left| z \right| > 1

\begin{matrix}
\arccot z & = & \frac {\pi} {2} - \arctan z \\
& = & \frac {\pi} {2} - (z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots) \\
& = & \frac {\pi} {2} - \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}
\end{matrix}
\, \quad \left| z \right| < 1

Chúng cũng có thể được định nghĩa thông qua các biểu thức sau, dựa vào tính chất chúng là đạo hàm của các hàm khác.


\arcsin\left(x\right) =
\int_0^x \frac 1 {\sqrt{1 - z^2}}\,\mathrm{d}z, \quad |x| < 1

\arccos\left(x\right) =
\int_x^1 \frac {1} {\sqrt{1 - z^2}}\,\mathrm{d}z,\quad |x| < 1

\arctan\left(x\right) =
\int_0^x \frac 1 {1 + z^2}\,\mathrm{d}z,
\quad \forall x \in \mathbb{R}

\arccot\left(x\right) =
\int_x^\infty \frac {1} {z^2 + 1}\,\mathrm{d}z,
\quad z > 0

\arcsec\left(x\right) =
\int_x^1 \frac 1 {|z| \sqrt{z^2 - 1}}\,\mathrm{d}z, \quad x > 1

\arccsc\left(x\right) =
\int_x^\infty \frac {-1} {|z| \sqrt{z^2 - 1}}\,\mathrm{d}z, \quad x > 1

Công thức trên cho phép mở rộng hàm lượng giác nghịch đảo ra cho các biến phức:


\arcsin (z) = -i \log \left(i \left(z + \sqrt{1 - z^2}\right) \right)

\arccos (z) = -i \log \left(z + \sqrt{z^2 - 1}\right)

\arctan (z) = \frac{i}{2} \log\left(\frac{1-iz}{1+iz}\right)

Một số đẳng thức[sửa | sửa mã nguồn]

Xem thêm Đẳng thức lượng giác
Xem thêm Danh sách tích phân với hàm lượng giác, Danh sách tích phân với hàm lượng giác ngược
\sin \left(x+y\right)=\sin x \cos y + \cos x \sin y
\sin \left(x-y\right)=\sin x \cos y - \cos x \sin y
\cos \left(x+y\right)=\cos x \cos y - \sin x \sin y
\cos \left(x-y\right)=\cos x \cos y + \sin x \sin y
\sin x+\sin y=2\sin \left(\frac{x+y}{2} \right) \cos \left(\frac{x-y}{2} \right)
\sin x-\sin y=2\cos \left(\frac{x+y}{2} \right) \sin \left(\frac{x-y}{2} \right)
\cos x+\cos y=2\cos \left(\frac{x+y}{2} \right) \cos \left(\frac{x-y}{2} \right)
\cos x-\cos y=-2\sin \left(\frac{x+y}{2} \right)\sin \left(\frac{x-y}{2} \right)
\tan x+\tan y=\frac{\sin \left(x+y\right) }{\cos x\cos y}
\tan x-\tan y=\frac{\sin \left(x-y\right) }{\cos x\cos y}
\cot x+\cot y=\frac{\sin \left(x+y\right) }{\sin x\sin y}
\cot x-\cot y=\frac{-\sin \left(x-y\right) }{\sin x\sin y}

Xem thêm[sửa | sửa mã nguồn]

Liên kết ngoài[sửa | sửa mã nguồn]