Lượng giác

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Bộ máy vận dụng tay Canadarm2 trên trạm không gian ISS. Nó được vận hành bằng cách điều khiển góc độ của khớp nối ở đầu tay bộ máy. Để tính toàn được vị trí cuối cùng của nhà du hành vũ trụ, bộ máy vận dụng tay cần phải dùng cách tính toán dượng theo hàm số lượng giác của những góc độ đó.

Lượng giác, tiếng Anh Trigonometry (từ tiếng Hy Lạp trigōnon nghĩa là "tam giác" + metron "đo lường"[1]). Nó là một nhánh toán học dùng để tìm hiểu về hình tam giác và sự liên hệ giữa cạnh của hình tam giác và góc độ của nó. Lượng giác chỉ ra hàm số lượng giác. Hàm số lượng giác diễn tả các mối liên kết và có thể áp dụng được để học những hiện tượng có chu kỳ, như sóng âm. Nhánh toán này được sinh ra từ thế kỷ thứ 3 trước công nguyên. Ban đầu nó là nhánh của toán hình học và được dùng chủ yếu để nghiên cứu thiên văn.[2] Lượng giác cũng là nền móng cho ngành nghệ thuật ứng dụng trong trắc địa.

Những bài học cơ bản về lượng giác thường được dạy ở trường lớp. Một là được dạy trong với khóa trước đại số hoặc khóa riêng biệt. Hàm số lượng giác được dùng rộng rãi trong nhánh toán tinh khiết và nhánh toán học ứng dụng. Ví dụ như phân tích Fourierhàm số sóng. Đó là những thứ có yếu tố quan trọng trong nhiều nhánh của khoa họccông nghệ. Lượng giác hình cầu nghiên cứu hình tam giác trên hình cầu, bề mặt của hằng số độ cong dương, trong hình học elip. Nó là nguyên tắc cơ bản cho ngành thiên văn học và ngành hàng hải. Lương giác trên một bề mặt của độ cong âm thuộc hình học Hyperbol.

Lịch sử[sửa | sửa mã nguồn]

Nguồn gốc của lượng giác được tìm thấy trong các nền văn minh của người Ai Cập, Babylon và nền văn minh lưu vực sông Ấn cổ đại từ trên 3000 năm trước. Các nhà toán học Ấn Độ cổ đại là những người tiên phong trong việc sử dụng tính toán các ẩn số đại số để sử dụng trong các tính toán thiên văn bằng lượng giác. Lagadha là nhà toán học duy nhất mà ngày nay người ta biết đã sử dụng hình học và lượng giác trong tính toán thiên văn học trong cuốn sách của ông Vedanga Jyotisha, phần lớn các công trình của ông đã bị tiêu hủy khi Ấn Độ bị người nước ngoài xâm lược.

Nhà toán học Hy Lạp Hipparchus vào khoảng năm 150 TCN đã biên soạn bảng lượng giác để giải các tam giác.

Một nhà toán học Hy Lạp khác, Ptolemy vào khoảng năm 100 đã phát triển các tính toán lượng giác xa hơn nữa.

Nhà toán học người SilesiaBartholemaeus Pitiscus đã xuất bản công trình có ảnh hưởng tới lượng giác năm 1595 cũng như giới thiệu thuật ngữ này sang tiếng Anhtiếng Pháp.

Một số nhà toán học cho rằng lượng giác nguyên thủy được nghĩ ra để tính toán các đồng hồ mặt trời, là một bài tập truyền thống trong các cuốn sách cổ về toán học. Nó cũng rất quan trọng trong đo đạc. NICHOLAS PUTNAM Alabama

Lượng giác ngày nay[sửa | sửa mã nguồn]

Có nhiều ứng dụng của lượng giác. Cụ thể có thể nói đến như là kỹ thuật của phép đo đạc tam giác được sử dụng trong thiên văn để đo khoảng cách tới các ngôi sao gần, trong địa lý để đo khoảng cách giữa các mốc giới hay trong các hệ thống hoa tiêu vệ tinh. Các lĩnh vực khác có sử dụng lượng giác còn có thiên văn (và vì thế là cả hoa tiêu trên đại dương, trong ngành hàng không và trong vũ trụ), lý thuyết âm nhạc, âm học, quang học, phân tích thị trường tài chính, điện tử học, lý thuyết xác suất, thống kê, sinh học, chiếu chụp y học (các loại chụp cắt lớpsiêu âm), dược khoa, hóa học, lý thuyết số (và vì thế là mật mã học), địa chấn học, khí tượng học, hải dương học và nhiều lĩnh vực của vật lý, đo đạc đất đai và địa hình, kiến trúc, ngữ âm học, kinh tế học, khoa công trình về điện, cơ khí, xây dựng, đồ họa máy tính, bản đồ học, tinh thể học v.v.

Mô hình hiện đại trừu tượng hóa của lượng giác- lượng giác hữu tỷ, bao gồm các khái niệm "bình phương sin của góc" và "bình phương khoảng cách" thay vì góc và độ dài - đã được tiến sĩ Norman Wildberger ở trường đại học tổng hợp New South Wales nghĩ ra.

Về lượng giác[sửa | sửa mã nguồn]

Xem thêm hàm lượng giác

Hai tam giác được coi là đồng dạng nếu một trong hai tam giác có thể thu được nhờ việc mở rộng (hay thu hẹp) cùng lúc tất cả các cạnh tam giác kia theo cùng tỷ lệ. Điều này chỉ có thể xảy ra khi và chỉ khi các góc tương ứng của chúng bằng nhau, ví dụ hai tam giác khi xếp lên nhau thì có một góc bằng nhau và cạnh đối của góc đã cho song song với nhau. Yếu tố quyết định về sự đồng dạng của tam giác là độ dài các cạnh của chúng tỷ lệ thuận hoặc các góc tương ứng của chúng phải bằng nhau. Điều đó có nghĩa là khi hai tam giác là đồng dạng và cạnh dài nhất của một tam giác lớn gấp 2 lần cạnh dài nhất của tam giác kia thì cạnh ngắn nhất của tam giác thứ nhất cũng lớn gấp 2 lần so với cạnh ngắn nhất của tam giác thứ hai và tương tự như vậy cho cặp cạnh còn lại. Ngoài ra, các tỷ lệ độ dài các cặp cạnh của một tam giác sẽ bằng các tỷ lệ độ dài của các cặp cạnh tương ứng của tam giác còn lại. Cạnh dài nhất của bất kỳ tam giác nào sẽ là cạnh đối của góc lớn nhất.

Sử dụng các yếu tố đã nói trên đây, người ta định nghĩa các hàm lượng giác, dựa vào tam giác vuông, là tam giác có một góc bằng 90 độ hay π/2 radian), tức tam giác có góc vuông.

Do tổng các góc trong một tam giác là 180 ° hay π radian, nên góc lớn nhất của tam giác vuông là góc vuông. Cạnh dài nhất của tam giác như thế sẽ là cạnh đối của góc vuông và người ta gọi nó là cạnh huyền.

Lấy 2 tam giác vuông có chung nhau một góc thứ hai A. Các tam giác này là đồng dạng, vì thế tỷ lệ của cạnh đối, b, của góc A so với cạnh huyền, h, là như nhau cho cả hai tam giác. Nó sẽ là một số nằm trong khoảng từ 0 tới 1 và nó chỉ phụ thuộc vào chính góc A; người ta gọi nó là sin của góc A và viết nó là sin (A) hay sin A. Tương tự, người ta cũng định nghĩa cosin của góc A như là tỷ lệ của cạnh kề, a, của góc A so với cạnh huyền, h, và viết nó là cos (A) hay cos A.

 \sin A = {\mbox{a} \over \mbox{h}}
 \qquad \cos A = {\mbox{b} \over \mbox{h}}

Đây là những hàm số quan trọng nhất trong lượng giác; các hàm số khác có thể được định nghĩa theo cách lấy tỷ lệ của các cạnh còn lại của tam giác vuông nhưng chúng có thể biểu diễn được theo sin và cosin. Đó là các hàm số như tang, sec, cotangcosec.

 \tan A = {\sin A \over \cos A} = {\mbox{a} \over \mbox{b}} 
 \qquad \sec A = {1 \over \cos A}   = {\mbox{h} \over \mbox{b}}
 \cot A = {\cos A \over \sin A} = {\mbox{b} \over \mbox{a}}
 \qquad \csc A = {1 \over \sin A}   = {\mbox{h} \over \mbox{a}}

Các hàm lượng giác như trên đã nói đã được định nghĩa cho các góc nằm trong khoảng từ 0 tới 90 ° (0 tới π/2 radian). Sử dụng khái niệm vectơ cho đường tròn đơn vị, người ta có thể mở rộng chúng để có các đối số âm và dương (xem thêm hàm lượng giác).

Khi các hàm sin và cosin đã được lập thành bảng (hoặc tính toán bằng máy tính hay máy tính tay) thì người ta có thể trả lời gần như mọi câu hỏi về các tam giác bất kỳ, sử dụng các quy tắc sin hay quy tắc cosin. Các quy tắc này có thể được sử dụng để tính toán các góc và cạnh còn lại của tam giác bất kỳ khi biết một trong ba yếu tố sau:

  1. Độ lớn của hai cạnh và góc kề của chúng
  2. Độ lớn của một cạnh và hai góc
  3. Độ lớn của cả 3 cạnh.

Các phương trình phổ biến[sửa | sửa mã nguồn]

Tam giác có độ dài 3 cạnh a,b,c và các góc đối diện các cạnh lần lượt là A,B,C

Trong các công thức dưới đây, A, BC là các góc của tam giác và a, b and c là chiều dài các cạnh đối diện với các góc tương ứng (xem hình vẽ).

Định lý Sin[sửa | sửa mã nguồn]

Định lí sin đối với một tam giá bất kỳ:

\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,

với R là bán kính đường tròn ngoại tiếp tam giác:

R = \frac{abc}{\sqrt{(a+b+c)(a-b+c)(a+b-c)(b+c-a)}}.

Một định lý khác liên quan đến hàm sin có thể dùng để tính toán diện tích tam giác. Cho chiều dài hai cạnh ab và góc giữa hai cạnh là C, diện tích của tam giác được tính như sau:

\mbox{Area} = \frac{1}{2}a b\sin C.
Tất cả các hàm lượng giác của góc θ có thể được dựng trong một đường tròn tâm O.

Định lý Cosin[sửa | sửa mã nguồn]

Định lí cos hay định lý cosin là một dạng mở rộng của định lý Pytago cho một tam giác bất kỳ:

c^2=a^2+b^2-2ab\cos C ,\,

hoặc:

\cos C=\frac{a^2+b^2-c^2}{2ab}.\,

Định lý cosin có thể được dùng để chứng minh công thức tính diện tích của Heron. Một tam giác bất kỳ có chiều dài các cạnh là a, b, và c, và nếu nửa chu vi là

s=\frac{1}{2}(a+b+c),

thì diện tích của tam giác được tính như sau:

\mbox{DT} = \sqrt{s(s-a)(s-b)(s-c)}.

Định lý tang[sửa | sửa mã nguồn]

Định lí tang:

\frac{a-b}{a+b}=\frac{\tan\left[\tfrac{1}{2}(A-B)\right]}{\tan\left[\tfrac{1}{2}(A+B)\right]}

Công thức Euler[sửa | sửa mã nguồn]

Công thức Euler, e^{ix} = \cos x + i \sin x, có thể được biểu diễn theo các hàm sin, cos, và tang theo số eđơn vị ảo i như sau:

\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \qquad \cos x = \frac{e^{ix} + e^{-ix}}{2}, \qquad \tan x = \frac{i(e^{-ix} - e^{ix})}{e^{ix} + e^{-ix}}.

Chú thích[sửa | sửa mã nguồn]

  1. ^ “trigonometry”. Online Etymology Dictionary. 
  2. ^ R. Nagel (ed.), Encyclopedia of Science, 2nd Ed., The Gale Group (2002)

Xem thêm[sửa | sửa mã nguồn]

Liên kết ngoài[sửa | sửa mã nguồn]