Quang học

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Quang học nghiên cứu hiện tượng tán sắc của ánh sáng.

Quang học là một ngành của vật lý học nghiên cứu các tính chất và hành xử của ánh sáng, bao gồm tương tác của nó với vật chất và các chế tạo ra các dụng cụ nhằm sử dụng hoặc phát hiện nó.[1] Phạm vi của quang học thường nghiên cứu ở bước sóng khả kiến, tử ngoại, và hồng ngoại. Bỏi vì ánh sáng là sóng điện từ, những dạng khác của bức xạ điện từ như tia X, sóng vi ba, và sóng vô tuyến cũng thể hiện các tính chất tương tự.[1]

Hầu hết các hiện tượng và hiệu ứng quang học có thể được miêu tả phù hợp bởi điện từ học cổ điển. Tuy nhiên, cách miêu tả điện từ đầy đủ của ánh sáng lại rất khó áp dụng trong thực tiễn. Quang học thực hành thường sử dụng các mô hình đơn giản. Theo nghĩa chung nhất đó là quang hình học, ngành nghiên cứu tính chất của tia sáng khi nó lan truyền trong môi trường theo đường thẳng hoặc bị lệch hay phản xạ giữa các môi trường. Quang học vật lý là mô hình đầy đủ hơn về ánh sáng, bao gồm các hiệu ứng có bản chất sóng như nhiễu xạgiao thoa mà không thể giải thích bởi quang hình học. Về mặt lịch sử, các nhà vật lý đã phát triển mô hình tia sáng đầu tiên, sau đó là mô hình sóng và mô hình hạt ánh sáng. Sự phát triển của lý thuyết điện từ học trong thế kỷ 19 đã dẫn tới khám phá ra rằng ánh sáng có bản chất là một loại bức xạ điện từ.

Một số hiệu ứng của ánh sáng chỉ có thể giải thích dựa trên bản chất lưỡng tính sóng hạt của ánh sáng. Cơ sở của những hiệu ứng này được miêu tả bởi cơ học lượng tử. Khi xem ánh sáng có tính chất hạt, thì ánh sáng được mô hình bởi tập hợp các hạt gọi là "photon". Quang học lượng tử là ngành ứng dụng các tính chất lượng tử để nghiên cứu các hệ quang học.

Ngành quang học có sự liên quan và ứng dụng cho nhiều lĩnh vực như thiên văn học, các lĩnh vực kỹ thuật, chụp ảnh, và y học (bao gồm nghiên cứu về mắtđo lường thị lực). Những ứng dụng của quang học có thể thấy trong nhiều lĩnh vực công nghệ và đời sống, như gương, thấu kính, kính thiên văn, kính hiển vi, laser, và sợi quang học.

Lịch sử[sửa | sửa mã nguồn]

Bài chi tiết: Lịch sử quang học
Thấu kính Nimrud.

Quang học bắt đầu với sự phát triển thấu kính của người Ai Cập cổ đạiLưỡng Hà. Thấu kính sớm nhất được biết tới, làm từ các tinh thể được mài bóng, thường là thạch anh, có niên đại vào khoảng năm 700 trước Công nguyên ở Assyria như thấu kính Layard/Nimrud.[2] Người La MãHy Lạp cổ đại đã đổ đầy các quả cầu kính bằng nước để tạo ra thấu kính. Những cách làm này sau đó được các nhà triết học Hy Lạp và Ấn Độ phát triển thành lý thuyết ánh sáng và sự nhìn, cũng như người La Mã phát triển lý thuyết quang hình học. Từ optics xuất phát từ tiếng Hy Lạp cổ đại ὀπτική, có nghĩa là "biểu hiện, nhìn nhận".[3]

Triết học Hy Lạp chia quang học ra thành hai lý thuyết đối lập dựa trên cách miêu tả làm sao mắt con người nhìn được, "lý thuyết mắt phát ra tia sáng" và "lý thuyết mắt thu nhận tia sáng".[4] Lý thuyết mắt thu nhận tia sáng cho rằng con người nhìn thấy sự vật là do các vật phát ra những bản sao giống y hệt chúng (gọi là eidola) mà mắt người thu nhận được. Với sủng hộ của nhiều triết gia như Democritus, Epicurus, Aristotle và các môn đệ, lý thuyết này dường như đã có nét giống với lý thuyết hiện đại về thị giác, nhưng nó vẫn chỉ là các tiên đoán mà thiếu đi các thí nghiệm kiểm tra.

Plato là người đầu tiên nêu ra lý thuyết mắt người phát ra các tia sáng, lý thuyết cho rằng cảm nhận thị lực là do các tia sáng phát ra từ mắt người chiếu vào vật thể. Ông cũng bình luận về tính chẵn lẻ thông qua đối xứng gương khi miêu tả vấn đề ở trong cuốn Timaeus.[5] Vài trăm năm sau, Euclid viết cuốn sách Quang học khi ông bắt đầu liên hệ sự nhìn với môn hình học, tạo ra những cơ sở đầu tiên cho ngành quang hình học.[6] Cuốn sách của ông được viết dựa trên cơ sở của lý thuyết phát tia của Plato và Euclid còn miêu tả các quy tắc toán học của phép phối cảnh cũng như hiệu ứng khúc xạ một cách định tính, mặc dù vậy ông đặt ra nghi vấn rằng chùm tia sáng từ mắt người liệu có thể ngay lập tức làm sáng lên các vì sao chỉ trong nháy mắt.[7] Ptolemy, trong cuốn Quang học của ông đã miêu tả một lý thuyết kết hợp cả hai lý thuyết trên: các tia sáng từ mắt tạo thành một hình nón, với đỉnh nằm trong mắt, và đáy nón xác định lên trường nhìn. Các tia sáng rất nhạy với mọi vật, và chúng mang thông tin chứa hướng và khoảng cách các vật trở lại não của người quan sát. Ông tổng kết lại các kết quả của Euclid và đi đến miêu tả cách đo góc khúc xạ, mặc dù ông đã không nhận ra mối liên hệ giữa góc này với góc tới của tia sáng.[8]

Alhazen, "the father of Optics".[9]
Reproduction of a page of Ibn Sahl's manuscript showing his knowledge of the law of refraction, now known as Snell's law

Trong thời Trung Cổ, các ý tưởng của người Hy Lạp đã được phục hồi và mở rộng trong các văn tự của thế giới Hồi giáo. Một trong những văn tự sớm nhất là của Al-Kindi (khoảng 801–73) viết về các giá trị của những ý tưởng của trường phái Aristote và Euclid về quang học, ủng hộ cho lý thuyết mắt phát tia sáng do có thể dùng nó để miêu tả định lượng các hiện tượng quang học.[10] Năm 984, nhà toán học Ba Tư Ibn Sahl viết luận thuyết "Về cách nung chảy tạo gương và thấu kính", ông đã miêu tả đúng định luật về sự khúc xạ mà có nét tương đương với định luật Snell.[11] Ông sử dụng định luật này nhằm tính toán hình dạng tối ưu cho thấu kính và các gương cầu lõm. Ở đầu thế kỷ 11, Alhazen (Ibn al-Haytham) viết cuốn Sách quang học (Kitab al-manazir) trong đó ông giải thích sự phản xạ và khúc xạ và đề xuất một hệ thống mới giải thích cho khả năng nhìn sự vật và ánh sáng dựa trên các quan sát và thực nghiệm.[12][13][14][15][16] Ông phê phán "lý thuyết phát tia sáng" của trường phái Ptolemy về mắt người phát ra tia nhìn, mà thay vào đó ông có ý tưởng về ánh sáng phản xạ theo đường thẳng ở mọi hướng từ mọi điểm của vật thể được quan sát và sau đó các tia sáng đi vào mắt, mặc dù ông không thể giải thích đúng đắn làm thế nào để mắt thu nhận được các tia sáng.[17] Công trình của Alhazen phần lớn bị lãng quên trong thế giới Ả Rập nhưng nó đã được một học giả vô danh biên dịch sang tiếng La tinh vào khoảng năm 1200 và sau này nó được thầy tu người Ba Lan Witelo tổng kết và mở rộng[18] đưa nó trở thành một cuốn sách mẫu mực về quang học ở Châu Âu trong gần 400 năm tiếp theo.

Ở thế kỷ 13 giám mục người Anh Robert Grosseteste viết một tác phẩm về ánh sáng trên nhiều chủ đề khoa học dưới bốn quan điểm khác nhau: nhận thức luận về ánh sáng, lý luận siêu hình học về ánh sáng, thuyết nguyên nhân hoặc tính chất vật lý của ánh sáng, lý luận thần học về ánh sáng,[19] dựa trên các công trình của các trường phái Aristotle và Plato. Môn đệ nổi tiếng nhất của Grosseteste, Roger Bacon, đã viết những công trình với nguồn trích dẫn phong phú dựa trên các bản dịch thời đó về các nghiên cứu quang học và triết học, bao gồm của Alhazen, Aristotle, Avicenna, Averroes, Euclid, al-Kindi, Ptolemy, Tideus, và Constantine the African. Bacon đã dùng các phần của một khối cầu thủy tinh để làm kính lúp để chứng tỏ ánh sáng phản xạ từ vật thể hơn là phát ra từ chúng.

Kính mắt đầu tiên được phát minh vào khoảng năm 1286 ở Italia.[20] Điều này dẫn tới sự ra đời của ngành công nghiệp quang học với mục đích mài cắt và đánh bóng thấu kính để làm các kính mắt, lúc đầu là ở Venice và Florence vào thế kỷ 13,[21] và sau đó với các trung tâm chế tạo kính quang học ở Hà LanĐức.[22] Những nhà chế tạo kính mắt đã cải tiến các loại thấu kính để hiệu chỉnh hình ảnh dựa trên các kinh nghiệm thực tiễn thu được từ các quan sát về hiệu ứng của các thấu kính hơn là từ các lý thuyết quang học thô sơ ngày đó (các lý thuyết hồi đó còn chưa giải thích được kính mắt hoạt động như thế nào).[23][24] Những phát triển thực tiễn, làm chủ và thí nghiệm với các thấu kính dẫn tới phát minh trực tiếp ra kính hiển vi quang học vào khoảng 1595, và kính thiên văn phản xạ năm 1608, cả hai đều được làm ở các trung tâm sản xuất kính quang học ở Hà Lan.[25][26]

Đầu thế kỷ 17 Johannes Kepler nghiên cứu mở rộng lĩnh vực quang hình học, bao gồm thấu kính, sự phản xạ từ gương phẳng và gương cầu, nguyên lý chụp ảnh qua lỗ hổng, định luật tỷ lệ nghịch đảo bình phương của cường độ ánh sáng, và cách giải thích quang học cho các hiện tượng thiên văn như nguyệt thựcnhật thựcthị sai. Ông cũng suy luận đúng về vai trò của võng mạc như là một cơ quan ghi nhận hình ảnh, và Kepler có thể đánh giá định lượng một cách khoa học các hiệu ứng mà các nhà quang học quan sát từ hơn 300 năm là do từ các loại thấu kính khác nhau.[27] Sau khi kính thiên văn được phát minh ra, Kepler đã thiết lập cơ sở lý thuyết miêu tả sự hoạt động của chúng và cách để nâng cao khả năng phóng đại của kính thiên văn, mà ngày nay gọi là kính thiên văn Kepler, với hai thấu kính lồi tạo ra sự phóng đại ảnh lớn hơn so với kính thiên văn trước đó.[28]

Bìa của lần xuất bản đầu tiên của cuốn sách của Newton Opticks

Lý thuyết về quang học tiến triển trong giữa thế kỷ 17 với công trình của nhà bác học René Descartes, ông giải thích nhiều hiện tượng quang học khác nhau như phản xạ và khúc xạ bằng giả sử ánh sáng được phát ra từ vật tạo ra nó.[29] Điều này khác cơ bản so với quan điểm lý thuyết phát xạ của người Hy Lạp cổ đại. Cuối thập kỷ 1660 và 1670, Newton đã mở rộng ý tưởng của Descartes thành lý thuyết hạt ánh sáng, và ông nổi tiếng với công trình xác định được ánh sáng trắng là tập hợp của các tia sáng đơn sắc mà có thể tách được nhờ một lăng kính. Năm 1690, Christiaan Huygens nêu ra lý thuyết sóng ánh sáng dựa trên đề xuất do Robert Hooke nêu ra vào năm 1664. Chính Hooke đã phê bình lý thuyết của Newton về hạt ánh sáng và sự phản đối giữa hai người kéo dài cho tới tận khi Hooke qua đời. Năm 1704, Newton xuất bản cuốn Opticks và ở thời điểm đó nó đã khá thành công cũng một phần nhờ sự nổi tiếng của Newton trong lĩnh vực vật lý học. Cuộc tranh luận giữa hai người về bản chất của ánh sáng dường như có phần thắng thuộc về Newton thời đó.[29]

Quang học Newton được chấp nhận rộng rãi cho tới đầu thế kỷ 19 khi Thomas YoungAugustin-Jean Fresnel thực hiện các thí nghiệm chứng tỏ sự giao thoa của ánh sáng cho thấy bản chất sóng của ánh sáng. Thí nghiệm nổi tiếng của Young chỉ ra ánh sáng tuân theo nguyên lý chồng chập, một tính chất của các dạng sóng mà lý thuyết hạt ánh sáng của Newton không giải thích được. Thí nghiệm này dẫn tới sự ra đời của kỹ thuật nhiễu xạ ánh sáng và mở ra một lĩnh vực mới trong quang học vật lý.[30] Quang học sóng đã được thống nhất thành công với lý thuyết điện từ bởi James Clerk Maxwell trong thập kỷ 1860.[31]

Dấu mốc phát triển tiếp theo của quang học là vào năm 1899 khi Max Planck miêu tả đúng mô hình bức xạ vật đen khi giả sử sự trao đổi năng lượng giữa ánh sáng và vật chất chỉ xảy ra dưới những gói rời rạc mà ông gọi là quanta - lượng tử].[32] Năm 1905 Albert Einstein công bố lý thuyết giải thích hiệu ứng quang điện củng cố thêm cho tính chất lượng tử của ánh sáng.[33][34] Năm 1913 Niels Bohr chỉ ra rằng các nguyên tử chỉ có thể phát ra lượng năng lượng rời rạc, do vậy ông giải thích được những vạch rời rạc trong quang phổ phát xạquang phổ hấp thụ.[35] Hiểu biết về tương tác giữa ánh sáng và vật chất đi theo sự phát triển mới này không những là cơ sở cho ngành quang học lượng tử mà còn có vai trò quan trọng trong sự phát triển của cơ học lượng tử. Lý thuyết điện động lực học lượng tử giải thích mọi hiện tượng và quá trình quang học nói chung là kết quả của sự trao đổi các photon ảo và photon thực.[36]

Quang học lượng tử có được ứng dụng thực tiễn quang trọng kể từ khi phát minh ra maser vào năm 1953 và laser vào năm 1960.[37] Phát triển từ công trình của Paul Dirac về lý thuyết trường lượng tử, George Sudarshan, Roy J. Glauber, và Leonard Mandel đã áp dụng lý thuyết lượng tử cho trường điện từ vào các thập niên 1950 và 1960 và thu được sự hiểu biết sâu sắc hơn về sự tách sóng quang và đặc tính thống kê của ánh sáng.

Quang hình học[sửa | sửa mã nguồn]

Quang hình học có thể chia thành hai nhánh chính: quang hình học và quang học vật lý. Trong quang hình học hay quang học tia sáng, ánh sáng được coi là truyền đi theo đường thẳng, còn trong quang học vật lý hay quang học sóng, ánh sáng được coi là một dạng sóng điện từ.

Quang hình học có thể xem như là một bộ phận của quang học vật lý khi coi bước sóng ánh sáng nhỏ hơn nhiều so với các dụng cụ quang học hoặc đối với các mô hình được áp dụng.

Quang hình học[sửa | sửa mã nguồn]

Bài chi tiết: Quang hình học
Hình học của các tia sáng phản xạ và khúc xạ

Quang hình học, hay quang học tia, miêu tả sự lan truyền của ánh sáng theo định nghĩa của các "tia" đi theo đường thẳng tuân theo các định luật phản xạ và khúc xạ của tia sáng tại chỗ tiếp giáp giữa các môi trường khác nhau.[38] Những định luật này đã được phát hiện bằng thực nghiệm từ năm 984[11] và được ứng dụng để thiết kế các thành phần và dụng cụ quang học từ đó cho tới tận ngày nay. Các định luật này có thể tóm tắt như sau:

Khi một tia sáng chạm tới biên giới giữa hai môi trường trong suốt, nó chia thành tia phản xạ và khúc xạ.

Định luật phản xạ phát biểu rằng tia phản xạ nằm trong mặt phẳng của tia tới, và góc phản xạ bằng góc tới.
Định luật khúc xạ phát biểu rằng tia khúc xạ nằm trong mặt phẳng của tia tới, và sine của góc khúc xạ chia cho sine của góc tới là hằng số.
\frac {\sin {\theta_1}}{\sin {\theta_2}} = n

với n là hằng số tương ứng cho hai môi trường vật liệu và đối với từng loại bước sóng ánh sáng. Nó còn được biết đến là chiết suất (chỉ số khúc xạ).

Định luật phản xạ và khúc xạ có thể rút ra từ nguyên lý Fermat: đường đi giữa hai điểm của tia sáng là đường mà ánh sáng có thời gian ít nhất để truyền giữa hai điểm.[39]

Các xấp xỉ[sửa | sửa mã nguồn]

Quang hình học thường được đơn giản hóa bằng cách xấp xỉ bàng trục, hay "xấp xỉ góc nhỏ". Các phương trình toán học miêu tả xấp xỉ sẽ trở lên tuyến tính, cho phép các thành phần và hệ quang học được miêu tả theo các ma trận đơn giản. Phương pháp này được miêu tả bởi lý thuyết quang học Gausstia bàng trục, cho phép tìm ra các tính chất cơ bản của quang hệ, như hình ảnh, vị trí xấp xỉ và độ phóng đại của vật.[40]

Phản xạ[sửa | sửa mã nguồn]

Bài chi tiết: Phản xạ
Hình vẽ phản xạ gương.

Phản xạ có thể chia thành hai loại: phản xạ gươngphản xạ khuếch tán. Phản xạ gương miêu tả tính bóng của bề mặt như gương, mà phản xạ tia sáng theo cách đơn giản và tiên đoán được. Điều này cho phép tạo ra ảnh phản xạ thực (ảnh thực) hoặc ngoại suy vị trí của vật (ảnh ảo). Phản xạ khuếch tán miêu tả vật liệu có tính chất mờ đục, không trong suốt như tờ giấy hoặc đá. Sự phản xạ từ những bề mặt chỉ có thể miêu tả một cách thống kê, với sự phân bố chính xác của các tia sáng phản xạ phụ thuộc vào cấu trúc vi mô của vật liệu. Nhiều vật phản xạ khuếch tán có thể miêu tả xấp xỉ theo định luật cosine Lambert, định luật miêu tả các bề mặt có độ chói như nhau khi nhìn dưới một góc bất kỳ. Bề mặt bóng có thể quan sát thấy cả hiện tượng phản xạ gương và phản xạ khuếch tán.

Trong phản xạ gương, hướng của tia phản xạ xác định từ góc của tia tới hợp với tia pháp tuyến, tia vuông góc với mặt phẳng tại điểm tia tới chạm vào mặt phẳng. Các tia tới, tia phản xạ và tia pháp tuyến nằm trong cùng một mặt phẳng, và góc giữa tia tới và tia pháp tuyến bằng góc giữa tia phản xạ và tia pháp tuyến.[41] Đây chính là định luật phản xạ.

Đối với gương phẳng, định luật phản xạ cho biết ảnh của vật là cùng chiều và có cùng khoảng cách từ phía sau tới gương khi vật đặt trước gương. Kích thước ảnh bằng kích thước của vật. Định luật cũng cho thấy ảnh qua gương có tính đảo ngược chẵn lẻ, mà chúng ta cảm nhận như là sự đảo ngược trái phải. Ảnh tạo thành hai (hay từ số chẵn gương) gương không có tính đảo ngược chẵn lẻ. Ánh sáng phản xạ ngược từ các vật phản xạ góc tạo ra các tia phản xạ quay ngược trở lại hướng mà tia tới đến[41].

Gương có bề mặt cong có thể được mô hình bằng cách dựng tia và sử dụng định luật phản xạ tại mỗi điểm của bề mặt. Đối với gương phản xạ parabolic, các tia tới song song tạo thành các tia phản xạ hội tụ tại một điểm gọi là tiêu điểm. Những gương cong khác cũng có thể tập trung ánh sáng được, nhưng với quang sai làm biến đổi hình dạng là cho tiêu điểm của gương bị nhòe ra. Đặc biệt, các gương cầu thể hiện tính chất cầu sai. Các gương cong có thể tạo ảnh với độ phóng đại lớn hơn hoặc nhỏ hơn một đơn vị, và độ phóng đại có thể là âm, nghĩa là ảnh bị đảo ngược hướng. Ảnh cùng chiều tạo thành từ sự phản xạ qua gương luôn luôn là ảnh ảo, trong khi ảnh bị đảo ngược là ảnh thật và có thể chiếu lên màn hình.[41]

Khúc xạ[sửa | sửa mã nguồn]

Bài chi tiết: Khúc xạ
Minh họa định luật Snell đối với trường hợp n1 < n2, như tiếp xúc không khí/nước.

Hiện tượng khúc xạ xảy ra khi ánh sáng truyền qua môi trường có chiếu suất thay đổi; đây cũng là nguyên lý cho thấu kính và sự tập trung ánh sáng. Trường hợp đơn giản nhất của khúc xạ khi tia sáng truyền qua hai môi trường đồng đều tiếp giáp nhau có chiết suất lần lượt n_1n_2. Định luật Snell miêu tả góc tia khúc xạ liên hệ với góc tia tới và chiếu suất của môi trường:

n_1\sin\theta_1 = n_2\sin\theta_2\

với \theta_1\theta_2 lần lượt là góc giữa tia pháp tuyến với tia tới và giữa tia pháp tuyến với tia khúc xạ. Hiệu ứng này cũng liên quan tới sự thay đổi của tốc độ ánh sáng trong môi trường khi xét đến định nghĩa của chiết suất, và phương trình trên tương ứng với:

v_1\sin\theta_2\ = v_2\sin\theta_1

với v_1v_2 là vận tốc sóng ánh sáng tương ứng trong hai môi trường.[41]

Nhiều hệ quả của định luật Snell xuất phát từ quá trình tia sáng đi từ vật liệu có chiếu suất cao hơn vào vật liệu có chiết suất thấp hơn, do vậy có thể xảy ra trường hợp tương tác giữa ánh sáng với bề mặt cho kết quả góc khúc xạ bằng 0. Hiệu ứng này được gọi là phản xạ toàn phần và là nguyên lý cơ bản của công nghệ sợi quang học. Khi ánh sáng đi vào một sợi quang học, hiệu ứng phản xạ toàn phần cho phép ánh sáng không bị tổn hao nhiều trong suốt quá trình nó truyền dọc theo sợi quang. Các nhà vật lý cũng có thể tạo ra được ánh sáng phân cực nhờ kết hợp hai hiệu ứng phản xạ và khúc xạ: Khi tia khúc xạ hợp với tia phản xạ một góc vuông thì lúc này tia khúc xạ có tính chất "phân cực phẳng". Góc tới thỏa mãn trường hợp này thường được gọi là góc Brewster.[41]

Định luật Snell còn dùng để tiên đoán sự lệch của tia sáng khi nó truyền qua "môi trường tuyến tính" khi đã biết chiết suất và hình học cấu trúc của môi trường. Ví dụ, ánh sáng truyền qua một lăng kính sẽ bị lệch hướng phụ thuộc vào hình dáng và chiết suất của lăng kính. Thêm vào đó, do các tần số ánh sáng khác nhau có chiết suất khác nhau đối với cùng một môi trường vật liệu, hiện tượng khúc xạ có thể được sử dụng để tạo ra phổ tán sắc giống như đối với cầu vồng. Isaac Newton là người đầu tiên phát hiện ra hiệu ứng này khi ông cho ánh sáng Mặt Trời truyền qua một lăng kính đặt trong phòng tối.[41]

Một số môi trường có chiết suất thay đổi dần theo vị trí trong nó, và do vậy ánh sáng truyền qua nó bị cong đi. Hiệu ứng này là nguyên nhân tạo ra ảo ảnh khi nhìn trên mặt đường bê tông nhựa vào những ngày nắng nóng khi chiết suất của các lớp không khí thay đổi làm cho tia sáng bị bẻ cong, tạo ra sự phản xạ khi nhìn từ xa. Vật liệu có chỉ số khúc xạ biến đổi được gọi là vật liệu có gradien chiết suất (GRIN) và nó có nhiều tính chất quan trọng áp dụng trong công nghệ quét quang học như ở máy photocopymáy scan. Lĩnh vực nghiên cứu tính chất này gọi là quang học gradien chiết suất.[42]

Biểu đồ dựng tia cho thấu kính hội tụ.

Một vật dùng để hội tụ hay phân kỳ các tia sáng gọi là thấu kính. Các thấu kính mỏng tạo ra hai tiêu điểm có thể được miêu tả nhờ phương trình thấu kính.[43] Nói chung có hai loại thấu kính: thấu kính lồi có thể hội tụ các tia sáng song song, và thấu kính lõm làm cho các tia sáng song song phân kỳ. Việc miêu tả sự tạo ảnh có thể thu được nhờ phương pháp dựng tia (vẽ ảnh) tương tự như đối với các gương cong. Các thấu kính mỏng có thể được tính toán đơn giản tuân theo phương trình sau xác định lên vị trí của ảnh khi biết tiêu cự (f) của thấu kính và khoảng cách tới vật (S_1):

\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}

với S_2 là khoảng cách tới ảnh và được quy ước có giá trị âm khi ảnh nằm cùng phía với vật và có giá trị dương khi ảnh nằm ở phía bên kia vật so với thấu kính.[43] Đối với thấu kính lõm quy ước tiêu cự f có giá trị âm.

Lens1.svg

Các tia tới song song hội tụ qua thấu kính lồi (thấu kính hội tụ) tạo ảnh thật ngược chiều nằm tại tiêu điểm ở phía bên kia của thấu kính. Các tia từ một vật ở khoảng cách gần hội tụ tại điểm có khoảng cách đến thấu kính lớn hơn tiêu cự; vật càng gần thấu kính thì ảnh tạo thành nằm càng xa thấu kính. Đối với thấu kính lõm, các tia tới song song phân kỳ sau khi đi qua thấu kính theo cách nếu kéo dài các tia ló thì chúng sẽ cắt nhau tại tiêu điểm của thấu kính lõm và nằm cùng phía với các tia tới, hay thấu kính lõm tạo ảnh ảo. Các tia từ vật ở khoảng cách gần cho ảnh ảo nằm gần thấu kính hơn so với tiêu cự và nằm cùng phía với vật. Vật càng nằm gần thấu kính, ảnh ảo càng nằm gần thấu kính.

Độ phóng đại của thấu kính được định nghĩa là:

 M = - \frac{S_2}{S_1} = \frac{f}{f - S_1}

với quy ước dấu âm để cho khi tạo ảnh ảo thì M có giá trị dương và ảnh thật thì M có giá âm. Tương tự như gương phẳng, ảnh cùng chiều với vật là ảnh ảo trong khi ảnh ngược chiều với vật là ảnh thật.[41]

Thấu kính cũng chịu hiện tượng quang sai làm mờ hay nhòe ảnh và tiêu điểm. Nguyên nhân của hiện tượng này là do sự không hoàn hảo về cấu trúc hình học của thấu kính và do sự thay đổi chiết suất đối với các bước sóng ánh sáng khác nhau (sắc sai).[41]

Ảnh (màu đỏ) của các chữ màu đen qua thấu kính lồi có tiêu cự f. Các tia được vẽ ra đối với các chữ E, IK lần lượt bằng màu lam, lục và vàng cam. Chú ý rằng E (tại khoảng cách 2f) có ảnh là ảnh thật, ngược chiều và kích thước bằng vật; I (tại f) có ảnh tại vô cực; và K (tại f/2) có ảnh là ảnh ảo, cùng chiều và kích thước lớn gấp đôi.

Quang học vật lý[sửa | sửa mã nguồn]

Bài chi tiết: Quang học vật lý

Trong quang học vật lý (hay quang học sóng), tính chất sóng của ánh sáng được nghiên cứu đến. Tính chất này cho phép giải thích được các hiện tượng như giao thoanhiễu xạ mà quang hình học không thể giải thích được. Tốc độ sóng ánh sáng trong không khí xấp xỉ 3,0×108 m/s (chính xác bằng 299.792.458 m/s trong chân không). Bước sóng của ánh sáng khả kiến thay đổi trong khoảng 400 và 700 nm, nhưng thuật ngữ "ánh sáng" cũng được áp dụng cho miền bức xạ hồng ngoại (0,7–300 μm) và tử ngoại (10–400 nm).

Mô hình sóng có thể dùng để thực hiện các tiên đoán một hệ quang học hành xử ra sao mà không cần đòi hỏi phải giải thích "sóng" là cái gì trong môi trường đó. Cho đến tận giữa thế kỷ 19, hầu hết các nhà vật lý tin rằng môi trường "ether" cho phép ánh sáng lan truyền trong nó.[44] Cho tới năm 1865 sự tồn tại của sóng điện từ mới được biết đến thông qua phương trình Maxwell. Sóng điện từ truyền đi với tốc độ ánh sáng và có điện trường và từ trường biến đổi và vuông góc với nhau, cũng như chúng vuông góc với hướng lan truyền của sóng.[45] Sóng ánh sáng là một loại sóng điện từ và khi nghiên cứu ở cấp độ nguyên tử các tính chất lượng tử của nó mới được thể hiện.

Mô hình và thiết kế hệ thống quang học sử dụng quang học sóng[sửa | sửa mã nguồn]

Có nhiều cách xấp xỉ đơn giản cho thiết kế và phân tích các quang hệ. Đa số sử dụng một đại lượng vô hướng để biểu diễn trường điện từ của sóng ánh sáng, hơn là sử dụng vectơ với các vectơ điện và vectơ từ vuông góc với nhau.[46] Phương trình Huygens–Fresnel là một trong những mô hình như thế. Mô hình này do Fresnel rút ra từ thực nghiệm vào năm 1815, dựa trên giả thuyết của Huygen rằng mỗi điểm nằm trên đầu sóng là nguồn cho các sóng thứ cấp mới; và sự lan truyền của toàn bộ là tổng của các sóng thứ cấp đến từ mọi điểm trong môi trường mà sóng đã đi qua, mà Fresnel kết hợp với nguyên lý giao thoa của sóng. Phương trình Huygens-Fresnel có nền tảng vật lý từ phương trình nhiễu xạ Kirchhoff, mà nó thu được từ phương trình Maxwell. Ví dụ về ứng dụng của nguyên lý Huygens–Fresnel như giải thích các hiện tượng khúc xạmô hình khúc xạ Fraunhofer.

Những mô hình phức tạp hơn, bao hàm mô hình về điện trường và từ trường của sóng ánh sáng, đòi hỏi cần thiết khi xét tới tương tác giữa ánh sáng và vật chất nơi tương tác này phụ thuộc vào tính chất điện và tính chất từ của vật chất. Ví dụ, hành xử của ánh sáng tương tác với bề mặt kim loại rất khác với khi nó tương tác với vật liệu điện môi. Mô hình vectơ cũng cần thiết khi giải thích sự phân cực của ánh sáng.

Các kỹ thuật mô phỏng bằng máy tính như sử dụng phương pháp phần tử hữu hạn, phương pháp phần tử biên có thể dùng để mô hình hóa sự lan truyền của ánh sáng trong hệ mà không thể thu được nghiệm giải tích. Những mô hình này đòi hỏi phương pháp số và thường dùng để giải các vấn đề yêu cầu độ chính xác tương đối xấp xỉ so với các nghiệm giải tích thu được.[47]

Tất cả các kết quả của quang hình học có thể rút ra nhờ kỹ thuật của lĩnh vực quang học Fourier mà có thể áp dụng cho nhiều kỹ thuật toán học và phân tích sử dụng trong kỹ thuật âm thanhxử tín hiệu.

Phương pháp hàm Gauss về sự lan truyền của chùm điện từ là mô hình quang học vật lý bàng trục cho sự lan truyền của bức xạ kết hợp như chùm laser. Kỹ thuật này có tính đến hiện tượng khúc xạ, cho phép tính toán chính xác tỷ lệ một chùm laser mở rộng theo khoảng cách, và kích thước tối thiểu mà chùm có thể tập trung được. Phương pháp hàm Gauss đã bắc cầu nối khoảng cách giữa quang hình học và quang học vật lý.[48]

Chồng chập và giao thoa[sửa | sửa mã nguồn]

Khi không có hiệu ứng phi tuyến, nguyên lý chồng chập được sử dụng để tiên đoán hình dạng của sóng thông qua cách cộng sóng.[49] Tương tác giữa các sóng tạo ra các phần "giao thoa", như giao thoa tăng cường hoặc giao thoa triệt tiêu. Nếu hai sóng có cùng bước sóng và tần số trong trạng thái cùng pha, cả đỉnh sóng và bụng sóng của mỗi sóng sẽ khớp với nhau. Kết quả này dẫn tới giao thoa tăng cường làm tăng biên độ của sóng, mà đối với ánh sáng sẽ là sự sáng lên của cường độ tại vị trí đó. Mặt khác, nếu hai sóng có cùng bước sóng và tần số những ngược pha nhau, thì đỉnh sóng của sóng này khớp với bụng sóng của sóng kia và ngược lại. Kết quả là giao thoa triệt tiêu và giảm biên độ sóng, mà đối với ánh sáng sẽ là sự mờ đi của cường độ tại vị trí đó. Hình vẽ dưới minh họa hiệu ứng này.[49]

Sóng
tổng hợp
Interference of two waves.svg
sóng 1
Sóng 2

Hai sóng cùng pha Hai sóng
ngược pha 180°
Khi dầu bị tràn, nguyên nhân các mảng màu sắc xuất hiện là do hiện tượng giao thoa ánh sáng ở các lớp dầu mỏng.

Nguyên lý Huygens–Fresnel phát biểu rằng mỗi điểm nằm trên đầu sóng là nguồn cho sóng thứ cấp mới, do vậy các đầu sóng có thể tạo ra các phần giao thoa tăng cường hoặc triệt tiêu ở những vị trí khác nhau tạo ra những miền sáng và tối đồng đều và tiên đoán được.[49] Giao thoa là một ngành khoa học đo đạc những mẫu hình này, thường là để xác định chính xác khoảng cách và độ phân giải góc.[50] Giao thoa kế Michelson là một dụng cụ nổi tiếng nhằm sử dụng hiệu ứng giao thoa để đo một cách chính xác sự phụ thuộc của tốc độ ánh sáng theo hướng lan truyền trong chân không.[51]

Tính chất của các màng mỏng ảnh hưởng trực tiếp tới hiệu ứng giao thoa. Các lớp phủ chống phản xạ dùng để triệt tiêu giao thoa làm giảm tính phản xạ của bề mặt được phủ lớp đó, do vậy giảm thiểu độ lóa và những phản xạ không mong muốn. Trường hợp gioa thoa đơn giản nhất là một lớp mỏng với độ dày bằng một phần tư bước sóng của ánh sáng tới. Sóng ánh sáng phản xạ từ đỉnh của màng và sóng ánh sáng phản xạ từ đáy màng lúc này lệch pha nhau 180°, làm cho giao thoa triệt tiêu. Các sóng chỉ lệch pha nhau đối với từng bước sóng một, mà người ta có thể chọn sóng ở giữa miền phổ khả kiến, trong bước sóng khoảng 550 nm. Các thiết kế phức tạp hơn sử dụng nhiều màng mỏng có thể đạt được triệt tiêu độ phản xạ trên phổ rộng hơn, hoặc độ phản xạ cực thấp cho riêng một bước sóng.

Tính chất giao thoa tăng cường ở các màng mỏng dùng để tạo ra sự phản xạ mạnh ánh sáng ở nhiều bước sóng, mà cũng phụ thuộc vào thiết kế và độ dày của màng. Các lớp này được dùng để tạo ra gương điện môi, màng lọc giao thoa, máy phản xạ nhiệt, và màng lọc màu trong các camera truyền hình màu. Hiệu ứng giao thoa cũng là nguyên nhân của hình ảnh bảy sắc cầu vồng nhìn thấy ở lớp dầu tràn.[49]

Nhiễu xạ[sửa | sửa mã nguồn]

Nhiễu xạ qua hai khe cách nhau một khoảng d. Các vân sáng xuất hiện dọc theo giao tuyến giữa các đường màu đen với các đường màu đen và giao tuyến giữa các đường màu trắng với các đường màu trắng. Những vân này cách nhau bởi một góc \theta và được đánh thứ tự theo n.

Nhiễu xạ là quá trình ánh sáng giao thoa khi nó gặp phải vật cản hoặc đi qua hai khe. Francesco Maria Grimaldi là người đầu tiên đã quan sát thấy hiệu ứng này vào năm 1665, và ông gọi nó bằng tiếng Latin là diffringere, 'bị phân thành từng mảnh'.[52][53] Cuối thế kỷ này, Robert Hooke và Isaac Newton cũng miêu tả hiện tượng mà ngày nay được biết đến là vành Newton khi quan sát nó qua một thấu kính lồi đặt trên mặt phẳng,[54] trong khi đó nhà thiên văn James Gregory cũng quan sát thấy các vân giao thoa từ lông vũ.[55]

Mô hình quang học vật lý đầu tiên về nhiễu xạ dựa trên nguyên lý Huygens–Fresnel được Thomas Young phát triển vào năm 1803 bằng thí nghiệm giao thoa của ông khi cho ánh sáng đi qua hai khe hẹp nằm gần nhau. Young nhận thấy kết quả ông thu được chỉ có thể giải thích khi hai khe được coi như là hai nguồn sóng chứ không đơn thuần là những khe hở.[56] Năm 1815 và 1818, Augustin-Jean Fresnel thiết lập lên cơ sở toán học của hiện tượng nhiễu xạ đối với các vân giao thoa qua hai khe.[43]

Mô hình đơn giản nhất miêu tả nhiễu xạ sử dụng các phương trình cho độ phân giải góc của các vân sáng và vân tối đối với bước sóng λ. Nói chung, phương trình có dạng

m \lambda = d \sin \theta

với d là khoảng cách giữa hai nguồn đầu sóng (trong trường hợp thí nghiệm Young, nó là khoảng cách giữa hai khe), \theta là độ phân giải góc (hoặc khoảng cách góc) giữa vân trung tâm và vân thứ m, với vân trung tâm khi m = 0.[57]

Phương trình này chỉ bị sửa đổi một chút khi xét trường hợp nhiễu xạ qua một khe, hoặc qua nhiều khe, hay đối với cách tử nhiễu xạ chứa rất nhiều khe nằm cách đều nhau.[57] Những mô hình phức tạp hơn về hiệu ứng nhiễu xạ đòi hỏi các mô hình toán học như nhiễu xạ Fresnel hoặc nhiễu xạ Fraunhofer.[58]

Nhiễu xạ tia X dựa trên nguyên lý rằng có thể dùng các nguyên tử với khoảng cách rất đều nhau trong dàn tinh thể cỡ vài angstrom để làm cách tử. Để nhìn thấy các phần nhiễu xạ, tia X với bước sóng gần bằng khoảng cách giữa hai nguyên tử gần nhau được chiếu vào tinh thể. Vì tinh thể là cách tử nhiễu xạ có cấu trúc ba chiều, các vân nhiễu xạ biến đổi phụ thuộc vào hai hướng theo như định luật Bragg, và những vân này có đặc trưng duy nhất đối với từng tinh thể và khoảng cách d giữa hai nguyên tử.[57]

Hiệu ứng nhiễu xạ giới hạn khả năng phát hiện sự tách biệt của nguồn sáng đối với máy dò quang học. Nói chung, ánh sáng đi qua lỗ của máy dò sẽ chịu ảnh hưởng của hiệu ứng nhiễu xạ và ảnh tốt nhất thu được (giới hạn nhiễu xạ quang học) nằm tại điểm trung tâm xung quanh vành sáng, tách biệt với các mảng tối; những hình này còn được biết tới là vân Airy, cùng với điểm sáng trung tâm của nó gọi là đĩa Airy.[43] Độ lớn của đĩa được cho bởi

 \sin \theta = 1,22 \frac{\lambda}{D}

với θ là độ phân giải góc, λbước sóng của ánh sáng, và Dđường kính của lỗ hổng (độ mở) thấu kính. Nếu độ phân giải góc giữa hai điểm nhỏ hơn nhiều bán kính góc của đĩa Airy, thì không thể phân biệt được hai điểm trong bức ảnh, nhưng nếu ngược lại thì sẽ thấy ảnh rõ ràng của hai điểm. Rayleigh định nghĩa "tiêu chuẩn giới hạn Rayleigh" rằng hai điểm có khoảng cách góc bằng bán kính của đĩa Airy (đo tới vân tối đầu tiên) có thể coi như là được phân giải. Các thấu kính có đường kính lớn hơn hoặc độ mở lớn hơn sẽ cho độ phân giải cao hơn.[57] Các giao thoa kế thiên văn với khả năng tạo ra độ mở rất lớn, cho phép thu được độ phân giải góc lớn nhất có thể.[50]

Đối với kỹ thuật chụp ảnh thiên văn, khí quyển ngăn cản độ phân giải tối ưu đạt được trong phổ khả kiến do khí quyển làm tán xạ và phân tán ánh sáng từ các ngôi sao khiến khi quan sát chúng thấy hình ảnh của sao như đang nhấp nháy. Các nhà thiên văn học coi hiệu ứng này để đánh giá chất lượng điều kiện quan sát thiên văn. Các kỹ thuật mới như quang học thích nghi đã được phát minh nhằm loại bỏ ảnh hưởng của tầng khí quyển đến chụp ảnh thiên văn và đã đạt tới giới hạn nhiễu xạ.[59]

Hiện tượng tán sắc và tán xạ[sửa | sửa mã nguồn]

Bài chi tiết: Tán sắcTán xạ
Ảnh động minh họa sự tán sắc ánh sáng thông qua lăng kính. Ánh sáng tần số cao (lam) bị lệch nhiều nhất, và ánh sáng tần số thấp (đỏ) bị lệch ít nhất.

Quá trình khúc xạ diễn ra trong giới hạn quang học vật lý, và khi bước sóng ánh sáng có độ lớn gần bằng khoảng cách đang xét đến thì lúc này xảy ra hiện tượng tán xạ. Loại tán xạ đơn giản nhất là tán xạ Thomson xảy ra khi sóng điện từ bị lệch bởi một hạt. Trong giới hạn tán xạ Thompson, khi bản chất sóng của hạt lấn át, ánh sáng bị tán sắc độc lập với tần số sóng, điều này ngược hẳn với tán xạ Compton khi nó phụ thuộc tần số và có tính chất chi phối bởi cơ học lượng tử, khi ánh sáng thể hiện bản chất hạt rõ hơn. Theo ý nghĩa thống kê, tán xạ đàn hồi của ánh sáng bỏi một số lớn hạt có kích cỡ nhỏ hơn bước sóng ánh sáng được biết tới như là quá trình tán xạ Rayleigh trong khi quá trình tương tự đối với tán xạ bởi hạt có kích cỡ tương đương hoặc lớn hơn bước sóng ánh sáng được biết tới là tán xạ Mie với hiệu ứng Tyndall là kết quả được quan sát phổ biến. Một phần nhỏ ánh sáng tán xạ từ nguyên tử hoặc phân tử có thể trải qua tán xạ Raman, khi sự thay đổi tần số là do trạng thái kích thích của nguyên tử hoặc phân tử. Tán xạ Brillouin xảy ra khi tần số ánh sáng thay đổi do vị trí thay đổi theo thời gian và sự chuyển động của vật liệu tỉ trọng lớn.[60]

Sự tán sắc xảy ra khi các tần số ánh sáng khác nhau có vận tốc pha khác nhau, hoặc là do tính chất của vật liệu (tán sắc do vật liệu) hoặc do hình học của ống dẫn sóng quang học (tán sắc do ống dẫn sóng). Hiện tượng tán sắc hay gặp nhất là khi có sự giảm chiết suất cùng với tăng bước sóng, mà có thể quan sát thấy ở đa số vật liệu trong suốt. Hiện tượng này được gọi là "tán sắc thông thường". Nó xảy ra trong mọi chất điện môi, khi bước sóng nằm trong miền mà chất điện môi không hấp thụ ánh sáng.[61] Trong miền bước sóng mà môi trường hấp thụ đáng kể, chiết suất có thể tăng theo bước sóng. Hiện tượng này gọi là "tán sắc dị thường".[41][61]

Quang phổ màu sắc thu được thông qua lăng kính là một ví dụ của hiện tượng tán sắc thông thường. Tại bề mặt lăng kính, định luật Snell tiên đoán rằng ánh sáng tới một góc bằng θ so với pháp tuyến sẽ bị khúc xạ một góc arcsin(sin (θ) / n). Do vậy, ánh sáng lam, với chỉ số khúc xạ cao hơn, bị lệch mạnh hơn so với ánh sáng đỏ, với kết quả là hình thành lên các thành phần màu của bảy sắc cầu vồng.[41]

Sự tán sắc: hai sóng hình sin lan truyền với tốc độ khác nhau tạo thành vân giao thoa di chuyển. Chấm đỏ di chuyển với vận tốc bằng vận tốc pha, trong khi chấm xanh di chuyển với vận tốc bằng vận tốc nhóm. Trong trường hợp này, vận tốc pha bằng hai lần vận tốc nhóm. Chấm đỏ hai lần vượt qua chấm xanh, khi chúng di chuyển từ trái sang phải của hình. Theo hiệu ứng, từng sóng (di chuyển với vận tốc pha) sẽ thoát khỏi bó sóng (mà di chuyển với vận tốc nhóm).

Vật liệu tán sắc thường được đặc trưng bởi số Abbe, cho phép định lượng một cách đơn giản sự tán sắc trên cơ sở chỉ số khúc xạ ở ba bước sóng khác nhau. Sự tán sắc do ống dẫn sóng phụ thuộc vào hằng số lan truyền.[43] Cả hai loại tán sắc làm sự thay đổi đặc trưng nhóm của sóng, đặc điểm mà gói sóng thay đổi với cùng tần số như của biên độ sóng. "Tán sắc do vận tốc nhóm" biểu hiện như là sự lan tỏa của "đường bao" tín hiệu của bức xạ và xác định bằng tham số độ trễ tán sắc nhóm:

D = \frac{1}{v_g^2} \frac{dv_g}{d\lambda}

với v_gvận tốc nhóm.[62] Đối với môi trường đồng nhất, vận tốc nhóm là

v_g = c \left( n - \lambda \frac{dn}{d\lambda} \right)^{-1}

với n là chỉ số khúc xạ (chiết suất), ctốc độ ánh sáng trong chân không.[63] Từ đây thu được công thức đơn giản hơn cho tham số độ trễ tán sắc:

D = - \frac{\lambda}{c} \, \frac{d^2 n}{d \lambda^2}.

Nếu D nhỏ hơn 0, người ta nói môi trường có tính tán sắc dương hoặc tán sắc thông thường. Nếu D lớn hơn 0, môi trường có tính tán sắc âm. Nếu một xung ánh sáng lan truyền qua môi trường tán sắc thông thường, khi đó thành phần có tần số cao hơn sẽ lan truyền chậm hơn thành phần có tần số thấp hơn. Khi đó xung trở thành xung có tần số tăng dần, tức là tần số tăng theo thời gian. Điều này có nghĩa là phổ thoát ra khỏi lăng kính cho thấy ánh sáng đỏ bị khúc xạ ít nhất và ánh sáng lam và cực tím bị khúc xạ ít nhất. Ngược lại, nếu một xung lan truyền qua môi trường có tính sắc dị thường (tán sắc âm), các thành phần có tần số cao hơn sẽ di chuyển nhanh hơn thành phần có tần số thấp hơn, và xung trở thành xung có tần số giảm dần, hay tần số giảm dần theo thời gian.[64]

Kết quả của hiện tượng tán sắc vận tốc nhóm, dù là tán sắc dương hay âm, ảnh hưởng quan trọng tới thời gian trải ra của xung tín hiệu. Điều này khiến cho kỹ thuật xử lý sự tán sắc là cực kỳ quan trọng trong hệ thống viễn thông quang học dựa trên sợi quang học, do nếu sự tán sắc quá lớn thì nhóm xung biểu thị thông tin sẽ trải ra theo thời gian và trộn lẫn nhau, khiến cho rất khó có thể chiết tách được thông tin.[62]

Phân cực[sửa | sửa mã nguồn]

Bài chi tiết: Phân cực

Sự phân cực là tính chất chung của sóng miêu tả hướng dao động của chúng. Đối với sóng ngang như ở đa số sóng điện từ, nó miêu tả hướng dao động trong mặt mặt phẳng vuông góc với phương truyền sóng. Sự dao động có thể chỉ theo một hướng (phân cực thẳng hay phân cực tuyến tính), hoặc hướng dao động có thể quay khi sóng truyền đi (phân cực tròn hoặc phân cực ellip). Sóng phân cực tròn có thể quay sang phải hoặc sang trái theo hướng truyền sóng, và mỗi hướng quay này trong sóng được gọi là tính chất chiral của sóng.[65]

Cách điển hình để xem xét tính phân cực đó là tìm ra hướng của vectơ điện trường khi sóng điện từ lan truyền. Vectơ điện trường của sóng phẳng có thể phân tích thành hai vectơ thành phần bất kỳ vuông góc với nhau ký hiệu là xy (với z là trục của phương truyền sóng). Hình dạng chiếu trên mặt phẳng x-y của vectơ điện trường là đường cong Lissajous miêu tả trạng thái phân cực.[43] Những hình sau minh họa một vài ví dụ về hướng của vectơ điện trường (lam), ở thời điểm t (trục đứng), tại một điểm bất kỳ trong không gian, với các thành phần xy (đỏ/trái và lam/phải), và hình chiếu quỹ đạo quét của vectơ trên mặt phẳng: cùng xảy ra một chu kỳ khi nhìn vào điện trường ở một thời điểm nhất định khi dịch chuyển điểm trong không gian, dọc theo hướng ngược lại với hướng lan truyền.

Linear polarization diagram
Linear
Circular polarization diagram
Circular
Elliptical polarization diagram
Elliptical polarization


In the leftmost figure above, the x and y components of the light wave are in phase. In this case, the ratio of their strengths is constant, so the direction of the electric vector (the vector sum of these two components) is constant. Since the tip of the vector traces out a single line in the plane, this special case is called linear polarization. The direction of this line depends on the relative amplitudes of the two components.[65]

In the middle figure, the two orthogonal components have the same amplitudes and are 90° out of phase. In this case, one component is zero when the other component is at maximum or minimum amplitude. There are two possible phase relationships that satisfy this requirement: the x component can be 90° ahead of the y component or it can be 90° behind the y component. In this special case, the electric vector traces out a circle in the plane, so this polarization is called circular polarization. The rotation direction in the circle depends on which of the two phase relationships exists and corresponds to right-hand circular polarization and left-hand circular polarization.[43]

In all other cases, where the two components either do not have the same amplitudes and/or their phase difference is neither zero nor a multiple of 90°, the polarization is called elliptical polarization because the electric vector traces out an ellipse in the plane (the polarization ellipse). This is shown in the above figure on the right. Detailed mathematics of polarization is done using Jones calculus and is characterised by the Stokes parameters.[43]

Thay đổi sự phân cực[sửa | sửa mã nguồn]

Media that have different indexes of refraction for different polarization modes are called birefringent.[65] Well known manifestations of this effect appear in optical wave plates/retarders (linear modes) and in Faraday rotation/optical rotation (circular modes).[43] If the path length in the birefringent medium is sufficient, plane waves will exit the material with a significantly different propagation direction, due to refraction. For example, this is the case with macroscopic crystals of calcite, which present the viewer with two offset, orthogonally polarised images of whatever is viewed through them. It was this effect that provided the first discovery of polarization, by Erasmus Bartholinus in 1669. In addition, the phase shift, and thus the change in polarization state, is usually frequency dependent, which, in combination with dichroism, often gives rise to bright colours and rainbow-like effects. In mineralogy, such properties, known as pleochroism, are frequently exploited for the purpose of identifying minerals using polarization microscopes. Additionally, many plastics that are not normally birefringent will become so when subject to mechanical stress, a phenomenon which is the basis of photoelasticity.[65] Non-birefringent methods, to rotate the linear polarization of light beams, include the use of prismatic polarization rotators which use total internal reflection in a prism set designed for efficient collinear transmission.[66]

A polariser changing the orientation of linearly polarised light.
In this picture, θ1θ0 = θi.

Media that reduce the amplitude of certain polarization modes are called dichroic. with devices that block nearly all of the radiation in one mode known as polarizing filters or simply "polarisers". Malus' law, which is named after Étienne-Louis Malus, says that when a perfect polariser is placed in a linear polarised beam of light, the intensity, I, of the light that passes through is given by

 I = I_0 \cos^2 \theta_i \quad ,

where

I0 is the initial intensity,
and θi is the angle between the light's initial polarization direction and the axis of the polariser.[65]

A beam of unpolarised light can be thought of as containing a uniform mixture of linear polarizations at all possible angles. Since the average value of \cos^2 \theta is 1/2, the transmission coefficient becomes

 \frac {I}{I_0} = \frac {1}{2}\quad

In practice, some light is lost in the polariser and the actual transmission of unpolarised light will be somewhat lower than this, around 38% for Polaroid-type polarisers but considerably higher (>49.9%) for some birefringent prism types.[43]

In addition to birefringence and dichroism in extended media, polarization effects can also occur at the (reflective) interface between two materials of different refractive index. These effects are treated by the Fresnel equations. Part of the wave is transmitted and part is reflected, with the ratio depending on angle of incidence and the angle of refraction. In this way, physical optics recovers Brewster's angle.[43] When light reflects from a thin film on a surface, interference between the reflections from the film's surfaces can produce polarization in the reflected and transmitted light.

Ánh sáng tự nhiên[sửa | sửa mã nguồn]
The effects of a polarising filter on the sky in a photograph. Left picture is taken without polariser. For the right picture, filter was adjusted to eliminate certain polarizations of the scattered blue light from the sky.

Most sources of electromagnetic radiation contain a large number of atoms or molecules that emit light. The orientation of the electric fields produced by these emitters may not be correlated, in which case the light is said to be unpolarised. If there is partial correlation between the emitters, the light is partially polarised. If the polarization is consistent across the spectrum of the source, partially polarised light can be described as a superposition of a completely unpolarised component, and a completely polarised one. One may then describe the light in terms of the degree of polarization, and the parameters of the polarization ellipse.[43]

Light reflected by shiny transparent materials is partly or fully polarised, except when the light is normal (perpendicular) to the surface. It was this effect that allowed the mathematician Étienne-Louis Malus to make the measurements that allowed for his development of the first mathematical models for polarised light. Polarization occurs when light is scattered in the atmosphere. The scattered light produces the brightness and colour in clear skies. This partial polarization of scattered light can be taken advantage of using polarizing filters to darken the sky in photographs. Optical polarization is principally of importance in chemistry due to circular dichroism and optical rotation ("circular birefringence") exhibited by optically active (chiral) molecules.[43]

Chú thích[sửa | sửa mã nguồn]

  1. ^ a ă McGraw-Hill Encyclopedia of Science and Technology (ấn bản 5). McGraw-Hill. 1993. 
  2. ^ “World's oldest telescope?”. BBC News. 1 tháng 7 năm 1999. Truy cập ngày 3 tháng 1 năm 2010. 
  3. ^ T. F. Hoad (1996). The Concise Oxford Dictionary of English Etymology. ISBN 0-19-283098-8. 
  4. ^ A History Of The Eye. stanford.edu. Retrieved on 2012-06-10.
  5. ^ T. L. Heath (2003). A manual of greek mathematics. Courier Dover Publications. tr. 181–182. ISBN 0-486-43231-9. 
  6. ^ William R. Uttal (1983). Visual Form Detection in 3-Dimensional Space. Psychology Press. tr. 25–. ISBN 978-0-89859-289-4. 
  7. ^ Euclid (1999). Trong Elaheh Kheirandish. The Arabic version of Euclid's optics = Kitāb Uqlīdis fī ikhtilāf al-manāẓir. New York: Springer. ISBN 0-387-98523-9. 
  8. ^ Ptolemy (1996). Trong A. Mark Smith. Ptolemy's theory of visual perception: an English translation of the Optics with introduction and commentary. DIANE Publishing. ISBN 0-87169-862-5. 
  9. ^ Verma, RL (1969), Al-Hazen: father of modern optics 
  10. ^ Adamson, Peter (2006). "Al-Kindi¯ and the reception of Greek philosophy". In Adamson, Peter; Taylor, R.. The Cambridge companion to Arabic philosophy. Cambridge University Press. p. 45. ISBN 978-0-521-52069-0.
  11. ^ a ă Rashed, Roshdi (1990). “A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses”. Isis 81 (3): 464–491. doi:10.1086/355456. JSTOR 233423. 
  12. ^ A. I. Sabra and J. P. Hogendijk (2003). The Enterprise of Science in Islam: New Perspectives. MIT Press. tr. 85–118. ISBN 0-262-19482-1. OCLC 237875424 50252039. 
  13. ^ G. Hatfield (1996). “Was the Scientific Revolution Really a Revolution in Science?”. Trong F. J. Ragep, P. Sally, S. J. Livesey. Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma. Brill Publishers. tr. 500. ISBN 9004101195. 
  14. ^ Nader El-Bizri (2005). “A Philosophical Perspective on Alhazen's Optics”. Arabic Sciences and Philosophy 15: 189–218. doi:10.1017/S0957423905000172. 
  15. ^ Nader El-Bizri (2007). “In Defence of the Sovereignty of Philosophy: al-Baghdadi's Critique of Ibn al-Haytham's Geometrisation of Place”. Arabic Sciences and Philosophy 17: 57–80. doi:10.1017/S0957423907000367. 
  16. ^ G. Simon (2006). “The Gaze in Ibn al-Haytham”. The Medieval History Journal 9: 89. doi:10.1177/097194580500900105. 
  17. ^ Ian P. Howard; Brian J. Rogers (1995). Binocular Vision and Stereopsis. Oxford University Press. tr. 7. ISBN 978-0-19-508476-4. 
  18. ^ Elena Agazzi; Enrico Giannetto; Franco Giudice (2010). Representing Light Across Arts and Sciences: Theories and Practices. V&R unipress GmbH. tr. 42. ISBN 978-3-89971-735-8. 
  19. ^ D. C. Lindberg, Theories of Vision from al-Kindi to Kepler, (Chicago: Univ. of Chicago Pr., 1976), pp. 94–99.
  20. ^ Vincent, Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. Philadelphia, PA: American Philosophical Society. tr. 4–5. ISBN 9780871692597. 
  21. ^ '''The Galileo Project > Science > The Telescope''' by Al Van Helden ''. Galileo.rice.edu. Retrieved on 2012-06-10.
  22. ^ Henry C. King (2003). The History of the Telescope. Courier Dover Publications. tr. 27. ISBN 978-0-486-43265-6. 
  23. ^ Paul S. Agutter; Denys N. Wheatley (2008). Thinking about Life: The History and Philosophy of Biology and Other Sciences. Springer. tr. 17. ISBN 978-1-4020-8865-0. 
  24. ^ Vincent Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. American Philosophical Society. tr. 210. ISBN 978-0-87169-259-7. 
  25. ^ Microscopes: Time Line, Nobel Foundation, retrieved April 3, 2009
  26. ^ Fred Watson (2007). Stargazer: The Life and Times of the Telescope. Allen & Unwin. tr. 55. ISBN 978-1-74175-383-7. 
  27. ^ Vincent Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. American Philosophical Society. tr. 244. ISBN 978-0-87169-259-7. 
  28. ^ Caspar, Kepler, pp. 198–202, Courier Dover Publications, 1993, ISBN 0486676056.
  29. ^ a ă A. I. Sabra (1981). Theories of light, from Descartes to Newton. CUP Archive. ISBN 0-521-28436-8. 
  30. ^ W. F. Magie (1935). A Source Book in Physics. Harvard University Press. tr. 309. 
  31. ^ J. C. Maxwell (1865). “A Dynamical Theory of the Electromagnetic Field”. Philosophical Transactions of the Royal Society of London 155: 459. Bibcode:1865RSPT..155..459C. doi:10.1098/rstl.1865.0008. 
  32. ^ For a solid approach to the complexity of Planck's intellectual motivations for the quantum, for his reluctant acceptance of its implications, see H. Kragh, Max Planck: the reluctant revolutionary, Physics World. December 2000.
  33. ^ Einstein, A. (1967). “On a heuristic viewpoint concerning the production and transformation of light”. Trong Ter Haar, D. The Old Quantum Theory. Pergamon. tr. 91–107. Truy cập ngày 18 tháng 3 năm 2010.  The chapter is an English translation of Einstein's 1905 paper on the photoelectric effect.
  34. ^ Einstein, A. (1905). “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” [On a heuristic viewpoint concerning the production and transformation of light]. Annalen der Physik (bằng German) 322 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. 
  35. ^ “On the Constitution of Atoms and Molecules”. Philosophical Magazine. 26, Series 6: 1–25. 1913. . The landmark paper laying the Bohr model of the atom and molecular bonding.
  36. ^ R. Feynman (1985). “Chapter 1”. QED: The Strange Theory of Light and Matter. Princeton University Press. tr. 6. ISBN 0-691-08388-6. 
  37. ^ N. Taylor (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. ISBN 0-684-83515-0. 
  38. ^ Ariel Lipson; Stephen G. Lipson; Henry Lipson (28 tháng 10 năm 2010). Optical Physics. Cambridge University Press. tr. 48. ISBN 978-0-521-49345-1. Truy cập ngày 12 tháng 7 năm 2012. 
  39. ^ Sir Arthur Schuster (1904). An Introduction to the Theory of Optics. E. Arnold. tr. 41. 
  40. ^ J. E. Greivenkamp (2004). Field Guide to Geometrical Optics. SPIE Field Guides vol. FG01. SPIE. tr. 19–20. ISBN 0-8194-5294-7. 
  41. ^ a ă â b c d đ e ê g H. D. Young (1992). “35”. University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. 
  42. ^ E. W. Marchand, Gradient Index Optics, New York, NY, Academic Press, 1978.
  43. ^ a ă â b c d đ e ê g h i k E. Hecht (1987). Optics (ấn bản 2). Addison Wesley. ISBN 0-201-11609-X.  Chapters 5 & 6.
  44. ^ MV Klein & TE Furtak, 1986, Optics, John Wiley & Sons, New York ISBN 0471872970.
  45. ^ Maxwell, James Clerk (1865). “A dynamical theory of the electromagnetic field” (PDF). Philosophical Transactions of the Royal Society of London 155: 499. doi:10.1098/rstl.1865.0008.  This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society. See also A dynamical theory of the electromagnetic field.
  46. ^ M. Born and E. Wolf (1999). Principle of Optics. Cambridge: Cambridge University Press. ISBN 0-521-64222-1.
  47. ^ J. Goodman (2005). Introduction to Fourier Optics (ấn bản 3). Roberts & Co Publishers. ISBN 0-9747077-2-4. 
  48. ^ A. E. Siegman (1986). Lasers. University Science Books. ISBN 0-935702-11-3.  Chapter 16.
  49. ^ a ă â b H. D. Young (1992). University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. Chapter 37
  50. ^ a ă P. Hariharan (2003). Optical Interferometry (ấn bản 2). San Diego, USA: Academic Press. ISBN 0-12-325220-2. 
  51. ^ E. R. Hoover (1977). Cradle of Greatness: National and World Achievements of Ohio's Western Reserve. Cleveland: Shaker Savings Association. 
  52. ^ J. L. Aubert (1760). Memoires pour l'histoire des sciences et des beaux arts. Paris: Impr. de S. A. S.; Chez E. Ganeau. tr. 149. 
  53. ^ D. Brewster (1831). A Treatise on Optics. London: Longman, Rees, Orme, Brown & Green and John Taylor. tr. 95. 
  54. ^ R. Hooke (1665). Micrographia: or, Some physiological descriptions of minute bodies made by magnifying glasses. London: J. Martyn and J. Allestry. ISBN 0-486-49564-7. 
  55. ^ H. W. Turnbull (1940–1941). “Early Scottish Relations with the Royal Society: I. James Gregory, F.R.S. (1638–1675)”. Notes and Records of the Royal Society of London 3: 22. doi:10.1098/rsnr.1940.0003. JSTOR 531136. 
  56. ^ T. Rothman (2003). Everything's Relative and Other Fables in Science and Technology. New Jersey: Wiley. ISBN 0-471-20257-6. 
  57. ^ a ă â b H. D. Young (1992). University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. Chapter 38
  58. ^ R. S. Longhurst (1968). Geometrical and Physical Optics, 2nd Edition. London: Longmans. 
  59. ^ Lucky Exposures: Diffraction limited astronomical imaging through the atmosphere by Robert Nigel Tubbs
  60. ^ C. F. Bohren and D. R. Huffman (1983). Absorption and Scattering of Light by Small Particles. Wiley. ISBN 0-471-29340-7. 
  61. ^ a ă J. D. Jackson (1975). Classical Electrodynamics (ấn bản 2). Wiley. tr. 286. ISBN 0-471-43132-X. 
  62. ^ a ă R. Ramaswami and K. N. Sivarajan (1998). Optical Networks: A Practical Perspective. London: Academic Press. ISBN 0123740924. 
  63. ^ Brillouin, Léon. Wave Propagation and Group Velocity. Academic Press Inc., New York (1960)
  64. ^ M. Born and E. Wolf (1999). Principle of Optics. Cambridge: Cambridge University Press. tr. 14–24. ISBN 0-521-64222-1. 
  65. ^ a ă â b c H. D. Young (1992). University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. Chapter 34
  66. ^ F. J. Duarte (2003). Tunable Laser Optics. New York: Elsevier-Academic. tr. 87–90. ISBN 0-12-222696-8. 

Tham khảo[sửa | sửa mã nguồn]

Further reading

Liên kết ngoài[sửa | sửa mã nguồn]

Thảo luận liên quan
Sách và hướng dẫn
Đọc thêm
Các hiệp hội
Các chủ đề chính trong quang học
Vật liệu quang học | Cách tử | Dụng cụ quang học | Giao thoa | Kính hiển vi | Khúc xạ | Lăng kính | Ma trận quang | Nhiễu xạ | Phản xạ | Phân cực | Quang học Fourier | Quang học Hamilton | Quang học phi tuyến | Quang sai | Sợi quang học | Tán xạ