Quang học

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Quang học nghiên cứu hiện tượng tán sắc của ánh sáng.

Quang học là một ngành của vật lý học nghiên cứu các tính chất và hành xử của ánh sáng, bao gồm tương tác của nó với vật chất và các chế tạo ra các dụng cụ nhằm sử dụng hoặc phát hiện nó.[1] Phạm vi của quang học thường nghiên cứu ở bước sóng khả kiến, tử ngoại, và hồng ngoại. Bỏi vì ánh sáng là sóng điện từ, những dạng khác của bức xạ điện từ như tia X, sóng vi ba, và sóng vô tuyến cũng thể hiện các tính chất tương tự.[1]

Hầu hết các hiện tượng và hiệu ứng quang học có thể được miêu tả phù hợp bởi điện từ học cổ điển. Tuy nhiên, cách miêu tả điện từ đầy đủ của ánh sáng lại rất khó áp dụng trong thực tiễn. Quang học thực hành thường sử dụng các mô hình đơn giản. Theo nghĩa chung nhất đó là quang hình học, ngành nghiên cứu tính chất của tia sáng khi nó lan truyền trong môi trường theo đường thẳng hoặc bị lệch hay phản xạ giữa các môi trường. Quang học vật lý là mô hình đầy đủ hơn về ánh sáng, bao gồm các hiệu ứng có bản chất sóng như nhiễu xạgiao thoa mà không thể giải thích bởi quang hình học. Về mặt lịch sử, các nhà vật lý đã phát triển mô hình tia sáng đầu tiên, sau đó là mô hình sóng và mô hình hạt ánh sáng. Sự phát triển của lý thuyết điện từ học trong thế kỷ 19 đã dẫn tới khám phá ra rằng ánh sáng có bản chất là một loại bức xạ điện từ.

Một số hiệu ứng của ánh sáng chỉ có thể giải thích dựa trên bản chất lưỡng tính sóng hạt của ánh sáng. Cơ sở của những hiệu ứng này được miêu tả bởi cơ học lượng tử. Khi xem ánh sáng có tính chất hạt, thì ánh sáng được mô hình bởi tập hợp các hạt gọi là "photon". Quang học lượng tử là ngành ứng dụng các tính chất lượng tử để nghiên cứu các hệ quang học.

Ngành quang học có sự liên quan và ứng dụng cho nhiều lĩnh vực như thiên văn học, các lĩnh vực kỹ thuật, chụp ảnh, và y học (bao gồm nghiên cứu về mắtđo lường thị lực). Những ứng dụng của quang học có thể thấy trong nhiều lĩnh vực công nghệ và đời sống, như gương, thấu kính, kính thiên văn, kính hiển vi, laser, và sợi quang học.

Lịch sử[sửa | sửa mã nguồn]

Bài chi tiết: Lịch sử quang học
Thấu kính Nimrud.

Quang học bắt đầu với sự phát triển thấu kính của người Ai Cập cổ đạiLưỡng Hà. Thấu kính sớm nhất được biết tới, làm từ các tinh thể được mài bóng, thường là thạch anh, có niên đại vào khoảng năm 700 trước Công nguyên ở Assyria như thấu kính Layard/Nimrud.[2] Người La MãHy Lạp cổ đại đã đổ đầy các quả cầu kính bằng nước để tạo ra thấu kính. Những cách làm này sau đó được các nhà triết học Hy Lạp và Ấn Độ phát triển thành lý thuyết ánh sáng và sự nhìn, cũng như người La Mã phát triển lý thuyết quang hình học. Từ optics xuất phát từ tiếng Hy Lạp cổ đại ὀπτική, có nghĩa là "biểu hiện, nhìn nhận".[3]

Triết học Hy Lạp chia quang học ra thành hai lý thuyết đối lập dựa trên cách miêu tả làm sao mắt con người nhìn được, "lý thuyết mắt phát ra tia sáng" và "lý thuyết mắt thu nhận tia sáng".[4] Lý thuyết mắt thu nhận tia sáng cho rằng con người nhìn thấy sự vật là do các vật phát ra những bản sao giống y hệt chúng (gọi là eidola) mà mắt người thu nhận được. Với sủng hộ của nhiều triết gia như Democritus, Epicurus, Aristotle và các môn đệ, lý thuyết này dường như đã có nét giống với lý thuyết hiện đại về thị giác, nhưng nó vẫn chỉ là các tiên đoán mà thiếu đi các thí nghiệm kiểm tra.

Plato là người đầu tiên nêu ra lý thuyết mắt người phát ra các tia sáng, lý thuyết cho rằng cảm nhận thị lực là do các tia sáng phát ra từ mắt người chiếu vào vật thể. Ông cũng bình luận về tính chẵn lẻ thông qua đối xứng gương khi miêu tả vấn đề ở trong cuốn Timaeus.[5] Vài trăm năm sau, Euclid viết cuốn sách Quang học khi ông bắt đầu liên hệ sự nhìn với môn hình học, tạo ra những cơ sở đầu tiên cho ngành quang hình học.[6] Cuốn sách của ông được viết dựa trên cơ sở của lý thuyết phát tia của Plato và Euclid còn miêu tả các quy tắc toán học của phép phối cảnh cũng như hiệu ứng khúc xạ một cách định tính, mặc dù vậy ông đặt ra nghi vấn rằng chùm tia sáng từ mắt người liệu có thể ngay lập tức làm sáng lên các vì sao chỉ trong nháy mắt.[7] Ptolemy, trong cuốn Quang học của ông đã miêu tả một lý thuyết kết hợp cả hai lý thuyết trên: các tia sáng từ mắt tạo thành một hình nón, với đỉnh nằm trong mắt, và đáy nón xác định lên trường nhìn. Các tia sáng rất nhạy với mọi vật, và chúng mang thông tin chứa hướng và khoảng cách các vật trở lại não của người quan sát. Ông tổng kết lại các kết quả của Euclid và đi đến miêu tả cách đo góc khúc xạ, mặc dù ông đã không nhận ra mối liên hệ giữa góc này với góc tới của tia sáng.[8]

Alhazen, "the father of Optics".[9]
Reproduction of a page of Ibn Sahl's manuscript showing his knowledge of the law of refraction, now known as Snell's law

Trong thời Trung Cổ, các ý tưởng của người Hy Lạp đã được phục hồi và mở rộng trong các văn tự của thế giới Hồi giáo. Một trong những văn tự sớm nhất là của Al-Kindi (khoảng 801–73) viết về các giá trị của những ý tưởng của trường phái Aristote và Euclid về quang học, ủng hộ cho lý thuyết mắt phát tia sáng do có thể dùng nó để miêu tả định lượng các hiện tượng quang học.[10] Năm 984, nhà toán học Ba Tư Ibn Sahl viết luận thuyết "Về cách nung chảy tạo gương và thấu kính", ông đã miêu tả đúng định luật về sự khúc xạ mà có nét tương đương với định luật Snell.[11] Ông sử dụng định luật này nhằm tính toán hình dạng tối ưu cho thấu kính và các gương cầu lõm. Ở đầu thế kỷ 11, Alhazen (Ibn al-Haytham) viết cuốn Sách quang học (Kitab al-manazir) trong đó ông giải thích sự phản xạ và khúc xạ và đề xuất một hệ thống mới giải thích cho khả năng nhìn sự vật và ánh sáng dựa trên các quan sát và thực nghiệm.[12][13][14][15][16] Ông phê phán "lý thuyết phát tia sáng" của trường phái Ptolemy về mắt người phát ra tia nhìn, mà thay vào đó ông có ý tưởng về ánh sáng phản xạ theo đường thẳng ở mọi hướng từ mọi điểm của vật thể được quan sát và sau đó các tia sáng đi vào mắt, mặc dù ông không thể giải thích đúng đắn làm thế nào để mắt thu nhận được các tia sáng.[17] Công trình của Alhazen phần lớn bị lãng quên trong thế giới Ả Rập nhưng nó đã được một học giả vô danh biên dịch sang tiếng La tinh vào khoảng năm 1200 và sau này nó được thầy tu người Ba Lan Witelo tổng kết và mở rộng[18] đưa nó trở thành một cuốn sách mẫu mực về quang học ở Châu Âu trong gần 400 năm tiếp theo.

Ở thế kỷ 13 giám mục người Anh Robert Grosseteste viết một tác phẩm về ánh sáng trên nhiều chủ đề khoa học dưới bốn quan điểm khác nhau: nhận thức luận về ánh sáng, lý luận siêu hình học về ánh sáng, thuyết nguyên nhân hoặc tính chất vật lý của ánh sáng, lý luận thần học về ánh sáng,[19] dựa trên các công trình của các trường phái Aristotle và Plato. Môn đệ nổi tiếng nhất của Grosseteste, Roger Bacon, đã viết những công trình với nguồn trích dẫn phong phú dựa trên các bản dịch thời đó về các nghiên cứu quang học và triết học, bao gồm của Alhazen, Aristotle, Avicenna, Averroes, Euclid, al-Kindi, Ptolemy, Tideus, và Constantine the African. Bacon đã dùng các phần của một khối cầu thủy tinh để làm kính lúp để chứng tỏ ánh sáng phản xạ từ vật thể hơn là phát ra từ chúng.

Kính mắt đầu tiên được phát minh vào khoảng năm 1286 ở Italia.[20] Điều này dẫn tới sự ra đời của ngành công nghiệp quang học với mục đích mài cắt và đánh bóng thấu kính để làm các kính mắt, lúc đầu là ở Venice và Florence vào thế kỷ 13,[21] và sau đó với các trung tâm chế tạo kính quang học ở Hà LanĐức.[22] Những nhà chế tạo kính mắt đã cải tiến các loại thấu kính để hiệu chỉnh hình ảnh dựa trên các kinh nghiệm thực tiễn thu được từ các quan sát về hiệu ứng của các thấu kính hơn là từ các lý thuyết quang học thô sơ ngày đó (các lý thuyết hồi đó còn chưa giải thích được kính mắt hoạt động như thế nào).[23][24] Những phát triển thực tiễn, làm chủ và thí nghiệm với các thấu kính dẫn tới phát minh trực tiếp ra kính hiển vi quang học vào khoảng 1595, và kính thiên văn phản xạ năm 1608, cả hai đều được làm ở các trung tâm sản xuất kính quang học ở Hà Lan.[25][26]

Đầu thế kỷ 17 Johannes Kepler nghiên cứu mở rộng lĩnh vực quang hình học, bao gồm thấu kính, sự phản xạ từ gương phẳng và gương cầu, nguyên lý chụp ảnh qua lỗ hổng, định luật tỷ lệ nghịch đảo bình phương của cường độ ánh sáng, và cách giải thích quang học cho các hiện tượng thiên văn như nguyệt thựcnhật thựcthị sai. Ông cũng suy luận đúng về vai trò của võng mạc như là một cơ quan ghi nhận hình ảnh, và Kepler có thể đánh giá định lượng một cách khoa học các hiệu ứng mà các nhà quang học quan sát từ hơn 300 năm là do từ các loại thấu kính khác nhau.[27] Sau khi kính thiên văn được phát minh ra, Kepler đã thiết lập cơ sở lý thuyết miêu tả sự hoạt động của chúng và cách để nâng cao khả năng phóng đại của kính thiên văn, mà ngày nay gọi là kính thiên văn Kepler, với hai thấu kính lồi tạo ra sự phóng đại ảnh lớn hơn so với kính thiên văn trước đó.[28]

Bìa của lần xuất bản đầu tiên của cuốn sách của Newton Opticks

Lý thuyết về quang học tiến triển trong giữa thế kỷ 17 với công trình của nhà bác học René Descartes, ông giải thích nhiều hiện tượng quang học khác nhau như phản xạ và khúc xạ bằng giả sử ánh sáng được phát ra từ vật tạo ra nó.[29] Điều này khác cơ bản so với quan điểm lý thuyết phát xạ của người Hy Lạp cổ đại. Cuối thập kỷ 1660 và 1670, Newton đã mở rộng ý tưởng của Descartes thành lý thuyết hạt ánh sáng, và ông nổi tiếng với công trình xác định được ánh sáng trắng là tập hợp của các tia sáng đơn sắc mà có thể tách được nhờ một lăng kính. Năm 1690, Christiaan Huygens nêu ra lý thuyết sóng ánh sáng dựa trên đề xuất do Robert Hooke nêu ra vào năm 1664. Chính Hooke đã phê bình lý thuyết của Newton về hạt ánh sáng và sự phản đối giữa hai người kéo dài cho tới tận khi Hooke qua đời. Năm 1704, Newton xuất bản cuốn Opticks và ở thời điểm đó nó đã khá thành công cũng một phần nhờ sự nổi tiếng của Newton trong lĩnh vực vật lý học. Cuộc tranh luận giữa hai người về bản chất của ánh sáng dường như có phần thắng thuộc về Newton thời đó.[29]

Quang học Newton được chấp nhận rộng rãi cho tới đầu thế kỷ 19 khi Thomas YoungAugustin-Jean Fresnel thực hiện các thí nghiệm chứng tỏ sự giao thoa của ánh sáng cho thấy bản chất sóng của ánh sáng. Thí nghiệm nổi tiếng của Young chỉ ra ánh sáng tuân theo nguyên lý chồng chập, một tính chất của các dạng sóng mà lý thuyết hạt ánh sáng của Newton không giải thích được. Thí nghiệm này dẫn tới sự ra đời của kỹ thuật nhiễu xạ ánh sáng và mở ra một lĩnh vực mới trong quang học vật lý.[30] Quang học sóng đã được thống nhất thành công với lý thuyết điện từ bởi James Clerk Maxwell trong thập kỷ 1860.[31]

Dấu mốc phát triển tiếp theo của quang học là vào năm 1899 khi Max Planck miêu tả đúng mô hình bức xạ vật đen khi giả sử sự trao đổi năng lượng giữa ánh sáng và vật chất chỉ xảy ra dưới những gói rời rạc mà ông gọi là quanta - lượng tử].[32] Năm 1905 Albert Einstein công bố lý thuyết giải thích hiệu ứng quang điện củng cố thêm cho tính chất lượng tử của ánh sáng.[33][34] Năm 1913 Niels Bohr chỉ ra rằng các nguyên tử chỉ có thể phát ra lượng năng lượng rời rạc, do vậy ông giải thích được những vạch rời rạc trong quang phổ phát xạquang phổ hấp thụ.[35] Hiểu biết về tương tác giữa ánh sáng và vật chất đi theo sự phát triển mới này không những là cơ sở cho ngành quang học lượng tử mà còn có vai trò quan trọng trong sự phát triển của cơ học lượng tử. Lý thuyết điện động lực học lượng tử giải thích mọi hiện tượng và quá trình quang học nói chung là kết quả của sự trao đổi các photon ảo và photon thực.[36]

Quang học lượng tử có được ứng dụng thực tiễn quang trọng kể từ khi phát minh ra maser vào năm 1953 và laser vào năm 1960.[37] Phát triển từ công trình của Paul Dirac về lý thuyết trường lượng tử, George Sudarshan, Roy J. Glauber, và Leonard Mandel đã áp dụng lý thuyết lượng tử cho trường điện từ vào các thập niên 1950 và 1960 và thu được sự hiểu biết sâu sắc hơn về sự tách sóng quang và đặc tính thống kê của ánh sáng.

Quang hình học[sửa | sửa mã nguồn]

Quang hình học có thể chia thành hai nhánh chính: quang hình học và quang học vật lý. Trong quang hình học hay quang học tia sáng, ánh sáng được coi là truyền đi theo đường thẳng, còn trong quang học vật lý hay quang học sóng, ánh sáng được coi là một dạng sóng điện từ.

Quang hình học có thể xem như là một bộ phận của quang học vật lý khi coi bước sóng ánh sáng nhỏ hơn nhiều so với các dụng cụ quang học hoặc đối với các mô hình được áp dụng.

Quang hình học[sửa | sửa mã nguồn]

Bài chi tiết: Quang hình học
Hình học của các tia sáng phản xạ và khúc xạ

Quang hình học, hay quang học tia, miêu tả sự lan truyền của ánh sáng theo định nghĩa của các "tia" đi theo đường thẳng tuân theo các định luật phản xạ và khúc xạ của tia sáng tại chỗ tiếp giáp giữa các môi trường khác nhau.[38] Những định luật này đã được phát hiện bằng thực nghiệm từ năm 984[11] và được ứng dụng để thiết kế các thành phần và dụng cụ quang học từ đó cho tới tận ngày nay. Các định luật này có thể tóm tắt như sau:

Khi một tia sáng chạm tới biên giới giữa hai môi trường trong suốt, nó chia thành tia phản xạ và khúc xạ.

Định luật phản xạ phát biểu rằng tia phản xạ nằm trong mặt phẳng của tia tới, và góc phản xạ bằng góc tới.
Định luật khúc xạ phát biểu rằng tia khúc xạ nằm trong mặt phẳng của tia tới, và sine của góc khúc xạ chia cho sine của góc tới là hằng số.
\frac {\sin {\theta_1}}{\sin {\theta_2}} = n

với n là hằng số tương ứng cho hai môi trường vật liệu và đối với từng loại bước sóng ánh sáng. Nó còn được biết đến là chiết suất (chỉ số khúc xạ).

Định luật phản xạ và khúc xạ có thể rút ra từ nguyên lý Fermat: đường đi giữa hai điểm của tia sáng là đường mà ánh sáng có thời gian ít nhất để truyền giữa hai điểm.[39]

Các xấp xỉ[sửa | sửa mã nguồn]

Quang hình học thường được đơn giản hóa bằng cách xấp xỉ bàng trục, hay "xấp xỉ góc nhỏ". Các phương trình toán học miêu tả xấp xỉ sẽ trở lên tuyến tính, cho phép các thành phần và hệ quang học được miêu tả theo các ma trận đơn giản. Phương pháp này được miêu tả bởi lý thuyết quang học Gausstia bàng trục, cho phép tìm ra các tính chất cơ bản của quang hệ, như hình ảnh, vị trí xấp xỉ và độ phóng đại của vật.[40]

Phản xạ[sửa | sửa mã nguồn]

Bài chi tiết: Phản xạ
Hình vẽ phản xạ gương.

Phản xạ có thể chia thành hai loại: phản xạ gươngphản xạ khuếch tán. Phản xạ gương miêu tả tính bóng của bề mặt như gương, mà phản xạ tia sáng theo cách đơn giản và tiên đoán được. Điều này cho phép tạo ra ảnh phản xạ thực (ảnh thực) hoặc ngoại suy vị trí của vật (ảnh ảo). Phản xạ khuếch tán miêu tả vật liệu có tính chất mờ đục, không trong suốt như tờ giấy hoặc đá. Sự phản xạ từ những bề mặt chỉ có thể miêu tả một cách thống kê, với sự phân bố chính xác của các tia sáng phản xạ phụ thuộc vào cấu trúc vi mô của vật liệu. Nhiều vật phản xạ khuếch tán có thể miêu tả xấp xỉ theo định luật cosine Lambert, định luật miêu tả các bề mặt có độ chói như nhau khi nhìn dưới một góc bất kỳ. Bề mặt bóng có thể quan sát thấy cả hiện tượng phản xạ gương và phản xạ khuếch tán.

Trong phản xạ gương, hướng của tia phản xạ xác định từ góc của tia tới hợp với tia pháp tuyến, tia vuông góc với mặt phẳng tại điểm tia tới chạm vào mặt phẳng. Các tia tới, tia phản xạ và tia pháp tuyến nằm trong cùng một mặt phẳng, và góc giữa tia tới và tia pháp tuyến bằng góc giữa tia phản xạ và tia pháp tuyến.[41] Đây chính là định luật phản xạ.

Đối với gương phẳng, định luật phản xạ cho biết ảnh của vật là cùng chiều và có cùng khoảng cách từ phía sau tới gương khi vật đặt trước gương. Kích thước ảnh bằng kích thước của vật. Định luật cũng cho thấy ảnh qua gương có tính đảo ngược chẵn lẻ, mà chúng ta cảm nhận như là sự đảo ngược trái phải. Ảnh tạo thành hai (hay từ số chẵn gương) gương không có tính đảo ngược chẵn lẻ. Ánh sáng phản xạ ngược từ các vật phản xạ góc tạo ra các tia phản xạ quay ngược trở lại hướng mà tia tới đến[41].

Gương có bề mặt cong có thể được mô hình bằng cách dựng tia và sử dụng định luật phản xạ tại mỗi điểm của bề mặt. Đối với gương phản xạ parabolic, các tia tới song song tạo thành các tia phản xạ hội tụ tại một điểm gọi là tiêu điểm. Những gương cong khác cũng có thể tập trung ánh sáng được, nhưng với quang sai làm biến đổi hình dạng là cho tiêu điểm của gương bị nhòe ra. Đặc biệt, các gương cầu thể hiện tính chất cầu sai. Các gương cong có thể tạo ảnh với độ phóng đại lớn hơn hoặc nhỏ hơn một đơn vị, và độ phóng đại có thể là âm, nghĩa là ảnh bị đảo ngược hướng. Ảnh cùng chiều tạo thành từ sự phản xạ qua gương luôn luôn là ảnh ảo, trong khi ảnh bị đảo ngược là ảnh thật và có thể chiếu lên màn hình.[41]

Khúc xạ[sửa | sửa mã nguồn]

Bài chi tiết: Khúc xạ
Minh họa định luật Snell đối với trường hợp n1 < n2, như tiếp xúc không khí/nước.

Hiện tượng khúc xạ xảy ra khi ánh sáng truyền qua môi trường có chiếu suất thay đổi; đây cũng là nguyên lý cho thấu kính và sự tập trung ánh sáng. Trường hợp đơn giản nhất của khúc xạ khi tia sáng truyền qua hai môi trường đồng đều tiếp giáp nhau có chiết suất lần lượt n_1n_2. Định luật Snell miêu tả góc tia khúc xạ liên hệ với góc tia tới và chiếu suất của môi trường:

n_1\sin\theta_1 = n_2\sin\theta_2\

với \theta_1\theta_2 lần lượt là góc giữa tia pháp tuyến với tia tới và giữa tia pháp tuyến với tia khúc xạ. Hiệu ứng này cũng liên quan tới sự thay đổi của tốc độ ánh sáng trong môi trường khi xét đến định nghĩa của chiết suất, và phương trình trên tương ứng với:

v_1\sin\theta_2\ = v_2\sin\theta_1

với v_1v_2 là vận tốc sóng ánh sáng tương ứng trong hai môi trường.[41]

Nhiều hệ quả của định luật Snell xuất phát từ quá trình tia sáng đi từ vật liệu có chiếu suất cao hơn vào vật liệu có chiết suất thấp hơn, do vậy có thể xảy ra trường hợp tương tác giữa ánh sáng với bề mặt cho kết quả góc khúc xạ bằng 0. Hiệu ứng này được gọi là phản xạ toàn phần và là nguyên lý cơ bản của công nghệ sợi quang học. Khi ánh sáng đi vào một sợi quang học, hiệu ứng phản xạ toàn phần cho phép ánh sáng không bị tổn hao nhiều trong suốt quá trình nó truyền dọc theo sợi quang. Các nhà vật lý cũng có thể tạo ra được ánh sáng phân cực nhờ kết hợp hai hiệu ứng phản xạ và khúc xạ: Khi tia khúc xạ hợp với tia phản xạ một góc vuông thì lúc này tia khúc xạ có tính chất "phân cực phẳng". Góc tới thỏa mãn trường hợp này thường được gọi là góc Brewster.[41]

Định luật Snell còn dùng để tiên đoán sự lệch của tia sáng khi nó truyền qua "môi trường tuyến tính" khi đã biết chiết suất và hình học cấu trúc của môi trường. Ví dụ, ánh sáng truyền qua một lăng kính sẽ bị lệch hướng phụ thuộc vào hình dáng và chiết suất của lăng kính. Thêm vào đó, do các tần số ánh sáng khác nhau có chiết suất khác nhau đối với cùng một môi trường vật liệu, hiện tượng khúc xạ có thể được sử dụng để tạo ra phổ tán sắc giống như đối với cầu vồng. Isaac Newton là người đầu tiên phát hiện ra hiệu ứng này khi ông cho ánh sáng Mặt Trời truyền qua một lăng kính đặt trong phòng tối.[41]

Một số môi trường có chiết suất thay đổi dần theo vị trí trong nó, và do vậy ánh sáng truyền qua nó bị cong đi. Hiệu ứng này là nguyên nhân tạo ra ảo ảnh khi nhìn trên mặt đường bê tông nhựa vào những ngày nắng nóng khi chiết suất của các lớp không khí thay đổi làm cho tia sáng bị bẻ cong, tạo ra sự phản xạ khi nhìn từ xa. Vật liệu có chỉ số khúc xạ biến đổi được gọi là vật liệu có gradien chiết suất (GRIN) và nó có nhiều tính chất quan trọng áp dụng trong công nghệ quét quang học như ở máy photocopymáy scan. Lĩnh vực nghiên cứu tính chất này gọi là quang học gradien chiết suất.[42]

Biểu đồ dựng tia cho thấu kính hội tụ.

Một vật dùng để hội tụ hay phân kỳ các tia sáng gọi là thấu kính. Các thấu kính mỏng tạo ra hai tiêu điểm có thể được miêu tả nhờ phương trình thấu kính.[43] Nói chung có hai loại thấu kính: thấu kính lồi có thể hội tụ các tia sáng song song, và thấu kính lõm làm cho các tia sáng song song phân kỳ. Việc miêu tả sự tạo ảnh có thể thu được nhờ phương pháp dựng tia (vẽ ảnh) tương tự như đối với các gương cong. Các thấu kính mỏng có thể được tính toán đơn giản tuân theo phương trình sau xác định lên vị trí của ảnh khi biết tiêu cự (f) của thấu kính và khoảng cách tới vật (S_1):

\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}

với S_2 là khoảng cách tới ảnh và được quy ước có giá trị âm khi ảnh nằm cùng phía với vật và có giá trị dương khi ảnh nằm ở phía bên kia vật so với thấu kính.[43] Đối với thấu kính lõm quy ước tiêu cự f có giá trị âm.

Lens1.svg

Các tia tới song song hội tụ qua thấu kính lồi (thấu kính hội tụ) tạo ảnh thật ngược chiều nằm tại tiêu điểm ở phía bên kia của thấu kính. Các tia từ một vật ở khoảng cách gần hội tụ tại điểm có khoảng cách đến thấu kính lớn hơn tiêu cự; vật càng gần thấu kính thì ảnh tạo thành nằm càng xa thấu kính. Đối với thấu kính lõm, các tia tới song song phân kỳ sau khi đi qua thấu kính theo cách nếu kéo dài các tia ló thì chúng sẽ cắt nhau tại tiêu điểm của thấu kính lõm và nằm cùng phía với các tia tới, hay thấu kính lõm tạo ảnh ảo. Các tia từ vật ở khoảng cách gần cho ảnh ảo nằm gần thấu kính hơn so với tiêu cự và nằm cùng phía với vật. Vật càng nằm gần thấu kính, ảnh ảo càng nằm gần thấu kính.

Độ phóng đại của thấu kính được định nghĩa là:

 M = - \frac{S_2}{S_1} = \frac{f}{f - S_1}

với quy ước dấu âm để cho khi tạo ảnh ảo thì M có giá trị dương và ảnh thật thì M có giá âm. Tương tự như gương phẳng, ảnh cùng chiều với vật là ảnh ảo trong khi ảnh ngược chiều với vật là ảnh thật.[41]

Thấu kính cũng chịu hiện tượng quang sai làm mờ hay nhòe ảnh và tiêu điểm. Nguyên nhân của hiện tượng này là do sự không hoàn hảo về cấu trúc hình học của thấu kính và do sự thay đổi chiết suất đối với các bước sóng ánh sáng khác nhau (sắc sai).[41]

Ảnh (màu đỏ) của các chữ màu đen qua thấu kính lồi có tiêu cự f. Các tia được vẽ ra đối với các chữ E, IK lần lượt bằng màu lam, lục và vàng cam. Chú ý rằng E (tại khoảng cách 2f) có ảnh là ảnh thật, ngược chiều và kích thước bằng vật; I (tại f) có ảnh tại vô cực; và K (tại f/2) có ảnh là ảnh ảo, cùng chiều và kích thước lớn gấp đôi.

Quang học vật lý[sửa | sửa mã nguồn]

Bài chi tiết: Quang học vật lý

Trong quang học vật lý (hay quang học sóng), tính chất sóng của ánh sáng được nghiên cứu đến. Tính chất này cho phép giải thích được các hiện tượng như giao thoanhiễu xạ mà quang hình học không thể giải thích được. Tốc độ sóng ánh sáng trong không khí xấp xỉ 3,0×108 m/s (chính xác bằng 299.792.458 m/s trong chân không). Bước sóng của ánh sáng khả kiến thay đổi trong khoảng 400 và 700 nm, nhưng thuật ngữ "ánh sáng" cũng được áp dụng cho miền bức xạ hồng ngoại (0,7–300 μm) và tử ngoại (10–400 nm).

Mô hình sóng có thể dùng để thực hiện các tiên đoán một hệ quang học hành xử ra sao mà không cần đòi hỏi phải giải thích "sóng" là cái gì trong môi trường đó. Cho đến tận giữa thế kỷ 19, hầu hết các nhà vật lý tin rằng môi trường "ether" cho phép ánh sáng lan truyền trong nó.[44] Cho tới năm 1865 sự tồn tại của sóng điện từ mới được biết đến thông qua phương trình Maxwell. Sóng điện từ truyền đi với tốc độ ánh sáng và có điện trường và từ trường biến đổi và vuông góc với nhau, cũng như chúng vuông góc với hướng lan truyền của sóng.[45] Sóng ánh sáng là một loại sóng điện từ và khi nghiên cứu ở cấp độ nguyên tử các tính chất lượng tử của nó mới được thể hiện.

Mô hình và thiết kế hệ thống quang học sử dụng quang học sóng[sửa | sửa mã nguồn]

Many simplified approximations are available for analysing and designing optical systems. Most of these use a single scalar quantity to represent the electric field of the light wave, rather than using a vector model with orthogonal electric and magnetic vectors.[46] The Huygens–Fresnel equation is one such model. This was derived empirically by Fresnel in 1815, based on Huygen's hypothesis that each point on a wavefront generates a secondary spherical wavefront, which Fresnel combined with the principle of superposition of waves. The Kirchhoff diffraction equation, which is derived using Maxwell's equations, puts the Huygens-Fresnel equation on a firmer physical foundation. Examples of the application of Huygens–Fresnel principle can be found in the sections on diffraction and Fraunhofer diffraction.

More rigorous models, involving the modelling of both electric and magnetic fields of the light wave, are required when dealing with the detailed interaction of light with materials where the interaction depends on their electric and magnetic properties. For instance, the behaviour of a light wave interacting with a metal surface is quite different from what happens when it interacts with a dielectric material. A vector model must also be used to model polarised light.

Numerical modeling techniques such as the finite element method, the boundary element method and the transmission-line matrix method can be used to model the propagation of light in systems which cannot be solved analytically. Such models are computationally demanding and are normally only used to solve small-scale problems that require accuracy beyond that which can be achieved with analytical solutions.[47]

All of the results from geometrical optics can be recovered using the techniques of Fourier optics which apply many of the same mathematical and analytical techniques used in acoustic engineering and signal processing.

Gaussian beam propagation is a simple paraxial physical optics model for the propagation of coherent radiation such as laser beams. This technique partially accounts for diffraction, allowing accurate calculations of the rate at which a laser beam expands with distance, and the minimum size to which the beam can be focused. Gaussian beam propagation thus bridges the gap between geometric and physical optics.[48]

Chồng chập và giao thoa[sửa | sửa mã nguồn]

In the absence of nonlinear effects, the superposition principle can be used to predict the shape of interacting waveforms through the simple addition of the disturbances.[49] This interaction of waves to produce a resulting pattern is generally termed "interference" and can result in a variety of outcomes. If two waves of the same wavelength and frequency are in phase, both the wave crests and wave troughs align. This results in constructive interference and an increase in the amplitude of the wave, which for light is associated with a brightening of the waveform in that location. Alternatively, if the two waves of the same wavelength and frequency are out of phase, then the wave crests will align with wave troughs and vice-versa. This results in destructive interference and a decrease in the amplitude of the wave, which for light is associated with a dimming of the waveform at that location. See below for an illustration of this effect.[49]

combined
waveform
Interference of two waves.svg
wave 1
wave 2

Two waves in phase Two waves 180° out
of phase
When oil or fuel is spilled, colourful patterns are formed by thin-film interference.

Since the Huygens–Fresnel principle states that every point of a wavefront is associated with the production of a new disturbance, it is possible for a wavefront to interfere with itself constructively or destructively at different locations producing bright and dark fringes in regular and predictable patterns.[49] Interferometry is the science of measuring these patterns, usually as a means of making precise determinations of distances or angular resolutions.[50] The Michelson interferometer was a famous instrument which used interference effects to accurately measure the speed of light.[51]

The appearance of thin films and coatings is directly affected by interference effects. Antireflective coatings use destructive interference to reduce the reflectivity of the surfaces they coat, and can be used to minimise glare and unwanted reflections. The simplest case is a single layer with thickness one-fourth the wavelength of incident light. The reflected wave from the top of the film and the reflected wave from the film/material interface are then exactly 180° out of phase, causing destructive interference. The waves are only exactly out of phase for one wavelength, which would typically be chosen to be near the centre of the visible spectrum, around 550 nm. More complex designs using multiple layers can achieve low reflectivity over a broad band, or extremely low reflectivity at a single wavelength.

Constructive interference in thin films can create strong reflection of light in a range of wavelengths, which can be narrow or broad depending on the design of the coating. These films are used to make dielectric mirrors, interference filters, heat reflectors, and filters for colour separation in colour television cameras. This interference effect is also what causes the colourful rainbow patterns seen in oil slicks.[49]

Nhiễu xạ[sửa | sửa mã nguồn]

Diffraction on two slits separated by distance d. The bright fringes occur along lines where black lines intersect with black lines and white lines intersect with white lines. These fringes are separated by angle \theta and are numbered as order n.

Diffraction is the process by which light interference is most commonly observed. The effect was first described in 1665 by Francesco Maria Grimaldi, who also coined the term from the Latin diffringere, 'to break into pieces'.[52][53] Later that century, Robert Hooke and Isaac Newton also described phenomena now known to be diffraction in Newton's rings[54] while James Gregory recorded his observations of diffraction patterns from bird feathers.[55]

The first physical optics model of diffraction that relied on the Huygens–Fresnel principle was developed in 1803 by Thomas Young in his interference experiments with the interference patterns of two closely spaced slits. Young showed that his results could only be explained if the two slits acted as two unique sources of waves rather than corpuscles.[56] In 1815 and 1818, Augustin-Jean Fresnel firmly established the mathematics of how wave interference can account for diffraction.[43]

The simplest physical models of diffraction use equations that describe the angular separation of light and dark fringes due to light of a particular wavelength (λ). In general, the equation takes the form

m \lambda = d \sin \theta

where d is the separation between two wavefront sources (in the case of Young's experiments, it was two slits), \theta is the angular separation between the central fringe and the mth order fringe, where the central maximum is m = 0.[57]

This equation is modified slightly to take into account a variety of situations such as diffraction through a single gap, diffraction through multiple slits, or diffraction through a diffraction grating that contains a large number of slits at equal spacing.[57] More complicated models of diffraction require working with the mathematics of Fresnel or Fraunhofer diffraction.[58]

X-ray diffraction makes use of the fact that atoms in a crystal have regular spacing at distances that are on the order of one angstrom. To see diffraction patterns, x-rays with similar wavelengths to that spacing are passed through the crystal. Since crystals are three-dimensional objects rather than two-dimensional gratings, the associated diffraction pattern varies in two directions according to Bragg reflection, with the associated bright spots occurring in unique patterns and d being twice the spacing between atoms.[57]

Diffraction effects limit the ability for an optical detector to optically resolve separate light sources. In general, light that is passing through an aperture will experience diffraction and the best images that can be created (as described in diffraction-limited optics) appear as a central spot with surrounding bright rings, separated by dark nulls; this pattern is known as an Airy pattern, and the central bright lobe as an Airy disk.[43] The size of such a disk is given by

 \sin \theta = 1.22 \frac{\lambda}{D}

where θ is the angular resolution, λ is the wavelength of the light, and D is the diameter of the lens aperture. If the angular separation of the two points is significantly less than the Airy disk angular radius, then the two points cannot be resolved in the image, but if their angular separation is much greater than this, distinct images of the two points are formed and they can therefore be resolved. Rayleigh defined the somewhat arbitrary "Rayleigh criterion" that two points whose angular separation is equal to the Airy disk radius (measured to first null, that is, to the first place where no light is seen) can be considered to be resolved. It can be seen that the greater the diameter of the lens or its aperture, the finer the resolution.[57] Interferometry, with its ability to mimic extremely large baseline apertures, allows for the greatest angular resolution possible.[50]

For astronomical imaging, the atmosphere prevents optimal resolution from being achieved in the visible spectrum due to the atmospheric scattering and dispersion which cause stars to twinkle. Astronomers refer to this effect as the quality of astronomical seeing. Techniques known as adaptive optics have been used to eliminate the atmospheric disruption of images and achieve results that approach the diffraction limit.[59]

Hiện tượng tán sắc và tán xạ[sửa | sửa mã nguồn]

Bài chi tiết: Tán sắcTán xạ
Conceptual animation of light dispersion through a prism. High frequency (blue) light is deflected the most, and low frequency (red) the least.

Refractive processes take place in the physical optics limit, where the wavelength of light is similar to other distances, as a kind of scattering. The simplest type of scattering is Thomson scattering which occurs when electromagnetic waves are deflected by single particles. In the limit of Thompson scattering, in which the wavelike nature of light is evident, light is dispersed independent of the frequency, in contrast to Compton scattering which is frequency-dependent and strictly a quantum mechanical process, involving the nature of light as particles. In a statistical sense, elastic scattering of light by numerous particles much smaller than the wavelength of the light is a process known as Rayleigh scattering while the similar process for scattering by particles that are similar or larger in wavelength is known as Mie scattering with the Tyndall effect being a commonly observed result. A small proportion of light scattering from atoms or molecules may undergo Raman scattering, wherein the frequency changes due to excitation of the atoms and molecules. Brillouin scattering occurs when the frequency of light changes due to local changes with time and movements of a dense material.[60]

Dispersion occurs when different frequencies of light have different phase velocities, due either to material properties (material dispersion) or to the geometry of an optical waveguide (waveguide dispersion). The most familiar form of dispersion is a decrease in index of refraction with increasing wavelength, which is seen in most transparent materials. This is called "normal dispersion". It occurs in all dielectric materials, in wavelength ranges where the material does not absorb light.[61] In wavelength ranges where a medium has significant absorption, the index of refraction can increase with wavelength. This is called "anomalous dispersion".[41][61]

The separation of colours by a prism is an example of normal dispersion. At the surfaces of the prism, Snell's law predicts that light incident at an angle θ to the normal will be refracted at an angle arcsin(sin (θ) / n). Thus, blue light, with its higher refractive index, is bent more strongly than red light, resulting in the well-known rainbow pattern.[41]

Dispersion: two sinusoids propagating at different speeds make a moving interference pattern. The red dot moves with the phase velocity, and the green dots propagate with the group velocity. In this case, the phase velocity is twice the group velocity. The red dot overtakes two green dots, when moving from the left to the right of the figure. In effect, the individual waves (which travel with the phase velocity) escape from the wave packet (which travels with the group velocity).

Material dispersion is often characterised by the Abbe number, which gives a simple measure of dispersion based on the index of refraction at three specific wavelengths. Waveguide dispersion is dependent on the propagation constant.[43] Both kinds of dispersion cause changes in the group characteristics of the wave, the features of the wave packet that change with the same frequency as the amplitude of the electromagnetic wave. "Group velocity dispersion" manifests as a spreading-out of the signal "envelope" of the radiation and can be quantified with a group dispersion delay parameter:

D = \frac{1}{v_g^2} \frac{dv_g}{d\lambda}

where v_g is the group velocity.[62] For a uniform medium, the group velocity is

v_g = c \left( n - \lambda \frac{dn}{d\lambda} \right)^{-1}

where n is the index of refraction and c is the speed of light in a vacuum.[63] This gives a simpler form for the dispersion delay parameter:

D = - \frac{\lambda}{c} \, \frac{d^2 n}{d \lambda^2}.

If D is less than zero, the medium is said to have positive dispersion or normal dispersion. If D is greater than zero, the medium has negative dispersion. If a light pulse is propagated through a normally dispersive medium, the result is the higher frequency components slow down more than the lower frequency components. The pulse therefore becomes positively chirped, or up-chirped, increasing in frequency with time. This causes the spectrum coming out of a prism to appear with red light the least refracted and blue/violet light the most refracted. Conversely, if a pulse travels through an anomalously (negatively) dispersive medium, high frequency components travel faster than the lower ones, and the pulse becomes negatively chirped, or down-chirped, decreasing in frequency with time.[64]

The result of group velocity dispersion, whether negative or positive, is ultimately temporal spreading of the pulse. This makes dispersion management extremely important in optical communications systems based on optical fibres, since if dispersion is too high, a group of pulses representing information will each spread in time and merge, making it impossible to extract the signal.[62]

Phân cực[sửa | sửa mã nguồn]

Bài chi tiết: Phân cực

Polarization is a general property of waves that describes the orientation of their oscillations. For transverse waves such as many electromagnetic waves, it describes the orientation of the oscillations in the plane perpendicular to the wave's direction of travel. The oscillations may be oriented in a single direction (linear polarization), or the oscillation direction may rotate as the wave travels (circular or elliptical polarization). Circularly polarised waves can rotate rightward or leftward in the direction of travel, and which of those two rotations is present in a wave is called the wave's chirality.[65]

The typical way to consider polarization is to keep track of the orientation of the electric field vector as the electromagnetic wave propagates. The electric field vector of a plane wave may be arbitrarily divided into two perpendicular components labeled x and y (with z indicating the direction of travel). The shape traced out in the x-y plane by the electric field vector is a Lissajous figure that describes the polarization state.[43] The following figures show some examples of the evolution of the electric field vector (blue), with time (the vertical axes), at a particular point in space, along with its x and y components (red/left and green/right), and the path traced by the vector in the plane (purple): The same evolution would occur when looking at the electric field at a particular time while evolving the point in space, along the direction opposite to propagation.

Linear polarization diagram
Linear
Circular polarization diagram
Circular
Elliptical polarization diagram
Elliptical polarization


In the leftmost figure above, the x and y components of the light wave are in phase. In this case, the ratio of their strengths is constant, so the direction of the electric vector (the vector sum of these two components) is constant. Since the tip of the vector traces out a single line in the plane, this special case is called linear polarization. The direction of this line depends on the relative amplitudes of the two components.[65]

In the middle figure, the two orthogonal components have the same amplitudes and are 90° out of phase. In this case, one component is zero when the other component is at maximum or minimum amplitude. There are two possible phase relationships that satisfy this requirement: the x component can be 90° ahead of the y component or it can be 90° behind the y component. In this special case, the electric vector traces out a circle in the plane, so this polarization is called circular polarization. The rotation direction in the circle depends on which of the two phase relationships exists and corresponds to right-hand circular polarization and left-hand circular polarization.[43]

In all other cases, where the two components either do not have the same amplitudes and/or their phase difference is neither zero nor a multiple of 90°, the polarization is called elliptical polarization because the electric vector traces out an ellipse in the plane (the polarization ellipse). This is shown in the above figure on the right. Detailed mathematics of polarization is done using Jones calculus and is characterised by the Stokes parameters.[43]

Thay đổi sự phân cực[sửa | sửa mã nguồn]

Media that have different indexes of refraction for different polarization modes are called birefringent.[65] Well known manifestations of this effect appear in optical wave plates/retarders (linear modes) and in Faraday rotation/optical rotation (circular modes).[43] If the path length in the birefringent medium is sufficient, plane waves will exit the material with a significantly different propagation direction, due to refraction. For example, this is the case with macroscopic crystals of calcite, which present the viewer with two offset, orthogonally polarised images of whatever is viewed through them. It was this effect that provided the first discovery of polarization, by Erasmus Bartholinus in 1669. In addition, the phase shift, and thus the change in polarization state, is usually frequency dependent, which, in combination with dichroism, often gives rise to bright colours and rainbow-like effects. In mineralogy, such properties, known as pleochroism, are frequently exploited for the purpose of identifying minerals using polarization microscopes. Additionally, many plastics that are not normally birefringent will become so when subject to mechanical stress, a phenomenon which is the basis of photoelasticity.[65] Non-birefringent methods, to rotate the linear polarization of light beams, include the use of prismatic polarization rotators which use total internal reflection in a prism set designed for efficient collinear transmission.[66]

A polariser changing the orientation of linearly polarised light.
In this picture, θ1θ0 = θi.

Media that reduce the amplitude of certain polarization modes are called dichroic. with devices that block nearly all of the radiation in one mode known as polarizing filters or simply "polarisers". Malus' law, which is named after Étienne-Louis Malus, says that when a perfect polariser is placed in a linear polarised beam of light, the intensity, I, of the light that passes through is given by

 I = I_0 \cos^2 \theta_i \quad ,

where

I0 is the initial intensity,
and θi is the angle between the light's initial polarization direction and the axis of the polariser.[65]

A beam of unpolarised light can be thought of as containing a uniform mixture of linear polarizations at all possible angles. Since the average value of \cos^2 \theta is 1/2, the transmission coefficient becomes

 \frac {I}{I_0} = \frac {1}{2}\quad

In practice, some light is lost in the polariser and the actual transmission of unpolarised light will be somewhat lower than this, around 38% for Polaroid-type polarisers but considerably higher (>49.9%) for some birefringent prism types.[43]

In addition to birefringence and dichroism in extended media, polarization effects can also occur at the (reflective) interface between two materials of different refractive index. These effects are treated by the Fresnel equations. Part of the wave is transmitted and part is reflected, with the ratio depending on angle of incidence and the angle of refraction. In this way, physical optics recovers Brewster's angle.[43] When light reflects from a thin film on a surface, interference between the reflections from the film's surfaces can produce polarization in the reflected and transmitted light.

Ánh sáng tự nhiên[sửa | sửa mã nguồn]
The effects of a polarising filter on the sky in a photograph. Left picture is taken without polariser. For the right picture, filter was adjusted to eliminate certain polarizations of the scattered blue light from the sky.

Most sources of electromagnetic radiation contain a large number of atoms or molecules that emit light. The orientation of the electric fields produced by these emitters may not be correlated, in which case the light is said to be unpolarised. If there is partial correlation between the emitters, the light is partially polarised. If the polarization is consistent across the spectrum of the source, partially polarised light can be described as a superposition of a completely unpolarised component, and a completely polarised one. One may then describe the light in terms of the degree of polarization, and the parameters of the polarization ellipse.[43]

Light reflected by shiny transparent materials is partly or fully polarised, except when the light is normal (perpendicular) to the surface. It was this effect that allowed the mathematician Étienne-Louis Malus to make the measurements that allowed for his development of the first mathematical models for polarised light. Polarization occurs when light is scattered in the atmosphere. The scattered light produces the brightness and colour in clear skies. This partial polarization of scattered light can be taken advantage of using polarizing filters to darken the sky in photographs. Optical polarization is principally of importance in chemistry due to circular dichroism and optical rotation ("circular birefringence") exhibited by optically active (chiral) molecules.[43]

Chú thích[sửa | sửa mã nguồn]

  1. ^ a ă McGraw-Hill Encyclopedia of Science and Technology (ấn bản 5). McGraw-Hill. 1993. 
  2. ^ “World's oldest telescope?”. BBC News. 1 tháng 7 năm 1999. Truy cập ngày 3 tháng 1 năm 2010. 
  3. ^ T. F. Hoad (1996). The Concise Oxford Dictionary of English Etymology. ISBN 0-19-283098-8. 
  4. ^ A History Of The Eye. stanford.edu. Retrieved on 2012-06-10.
  5. ^ T. L. Heath (2003). A manual of greek mathematics. Courier Dover Publications. tr. 181–182. ISBN 0-486-43231-9. 
  6. ^ William R. Uttal (1983). Visual Form Detection in 3-Dimensional Space. Psychology Press. tr. 25–. ISBN 978-0-89859-289-4. 
  7. ^ Euclid (1999). Trong Elaheh Kheirandish. The Arabic version of Euclid's optics = Kitāb Uqlīdis fī ikhtilāf al-manāẓir. New York: Springer. ISBN 0-387-98523-9. 
  8. ^ Ptolemy (1996). Trong A. Mark Smith. Ptolemy's theory of visual perception: an English translation of the Optics with introduction and commentary. DIANE Publishing. ISBN 0-87169-862-5. 
  9. ^ Verma, RL (1969), Al-Hazen: father of modern optics 
  10. ^ Adamson, Peter (2006). "Al-Kindi¯ and the reception of Greek philosophy". In Adamson, Peter; Taylor, R.. The Cambridge companion to Arabic philosophy. Cambridge University Press. p. 45. ISBN 978-0-521-52069-0.
  11. ^ a ă Rashed, Roshdi (1990). “A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses”. Isis 81 (3): 464–491. doi:10.1086/355456. JSTOR 233423. 
  12. ^ A. I. Sabra and J. P. Hogendijk (2003). The Enterprise of Science in Islam: New Perspectives. MIT Press. tr. 85–118. ISBN 0-262-19482-1. OCLC 237875424 50252039. 
  13. ^ G. Hatfield (1996). “Was the Scientific Revolution Really a Revolution in Science?”. Trong F. J. Ragep, P. Sally, S. J. Livesey. Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma. Brill Publishers. tr. 500. ISBN 9004101195. 
  14. ^ Nader El-Bizri (2005). “A Philosophical Perspective on Alhazen's Optics”. Arabic Sciences and Philosophy 15: 189–218. doi:10.1017/S0957423905000172. 
  15. ^ Nader El-Bizri (2007). “In Defence of the Sovereignty of Philosophy: al-Baghdadi's Critique of Ibn al-Haytham's Geometrisation of Place”. Arabic Sciences and Philosophy 17: 57–80. doi:10.1017/S0957423907000367. 
  16. ^ G. Simon (2006). “The Gaze in Ibn al-Haytham”. The Medieval History Journal 9: 89. doi:10.1177/097194580500900105. 
  17. ^ Ian P. Howard; Brian J. Rogers (1995). Binocular Vision and Stereopsis. Oxford University Press. tr. 7. ISBN 978-0-19-508476-4. 
  18. ^ Elena Agazzi; Enrico Giannetto; Franco Giudice (2010). Representing Light Across Arts and Sciences: Theories and Practices. V&R unipress GmbH. tr. 42. ISBN 978-3-89971-735-8. 
  19. ^ D. C. Lindberg, Theories of Vision from al-Kindi to Kepler, (Chicago: Univ. of Chicago Pr., 1976), pp. 94–99.
  20. ^ Vincent, Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. Philadelphia, PA: American Philosophical Society. tr. 4–5. ISBN 9780871692597. 
  21. ^ '''The Galileo Project > Science > The Telescope''' by Al Van Helden ''. Galileo.rice.edu. Retrieved on 2012-06-10.
  22. ^ Henry C. King (2003). The History of the Telescope. Courier Dover Publications. tr. 27. ISBN 978-0-486-43265-6. 
  23. ^ Paul S. Agutter; Denys N. Wheatley (2008). Thinking about Life: The History and Philosophy of Biology and Other Sciences. Springer. tr. 17. ISBN 978-1-4020-8865-0. 
  24. ^ Vincent Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. American Philosophical Society. tr. 210. ISBN 978-0-87169-259-7. 
  25. ^ Microscopes: Time Line, Nobel Foundation, retrieved April 3, 2009
  26. ^ Fred Watson (2007). Stargazer: The Life and Times of the Telescope. Allen & Unwin. tr. 55. ISBN 978-1-74175-383-7. 
  27. ^ Vincent Ilardi (2007). Renaissance Vision from Spectacles to Telescopes. American Philosophical Society. tr. 244. ISBN 978-0-87169-259-7. 
  28. ^ Caspar, Kepler, pp. 198–202, Courier Dover Publications, 1993, ISBN 0486676056.
  29. ^ a ă A. I. Sabra (1981). Theories of light, from Descartes to Newton. CUP Archive. ISBN 0-521-28436-8. 
  30. ^ W. F. Magie (1935). A Source Book in Physics. Harvard University Press. tr. 309. 
  31. ^ J. C. Maxwell (1865). “A Dynamical Theory of the Electromagnetic Field”. Philosophical Transactions of the Royal Society of London 155: 459. Bibcode:1865RSPT..155..459C. doi:10.1098/rstl.1865.0008. 
  32. ^ For a solid approach to the complexity of Planck's intellectual motivations for the quantum, for his reluctant acceptance of its implications, see H. Kragh, Max Planck: the reluctant revolutionary, Physics World. December 2000.
  33. ^ Einstein, A. (1967). “On a heuristic viewpoint concerning the production and transformation of light”. Trong Ter Haar, D. The Old Quantum Theory. Pergamon. tr. 91–107. Truy cập ngày 18 tháng 3 năm 2010.  The chapter is an English translation of Einstein's 1905 paper on the photoelectric effect.
  34. ^ Einstein, A. (1905). “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” [On a heuristic viewpoint concerning the production and transformation of light]. Annalen der Physik (bằng German) 322 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. 
  35. ^ “On the Constitution of Atoms and Molecules”. Philosophical Magazine. 26, Series 6: 1–25. 1913. . The landmark paper laying the Bohr model of the atom and molecular bonding.
  36. ^ R. Feynman (1985). “Chapter 1”. QED: The Strange Theory of Light and Matter. Princeton University Press. tr. 6. ISBN 0-691-08388-6. 
  37. ^ N. Taylor (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. ISBN 0-684-83515-0. 
  38. ^ Ariel Lipson; Stephen G. Lipson; Henry Lipson (28 tháng 10 năm 2010). Optical Physics. Cambridge University Press. tr. 48. ISBN 978-0-521-49345-1. Truy cập ngày 12 tháng 7 năm 2012. 
  39. ^ Sir Arthur Schuster (1904). An Introduction to the Theory of Optics. E. Arnold. tr. 41. 
  40. ^ J. E. Greivenkamp (2004). Field Guide to Geometrical Optics. SPIE Field Guides vol. FG01. SPIE. tr. 19–20. ISBN 0-8194-5294-7. 
  41. ^ a ă â b c d đ e ê g H. D. Young (1992). “35”. University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. 
  42. ^ E. W. Marchand, Gradient Index Optics, New York, NY, Academic Press, 1978.
  43. ^ a ă â b c d đ e ê g h i k E. Hecht (1987). Optics (ấn bản 2). Addison Wesley. ISBN 0-201-11609-X.  Chapters 5 & 6.
  44. ^ MV Klein & TE Furtak, 1986, Optics, John Wiley & Sons, New York ISBN 0471872970.
  45. ^ Maxwell, James Clerk (1865). “A dynamical theory of the electromagnetic field” (PDF). Philosophical Transactions of the Royal Society of London 155: 499. doi:10.1098/rstl.1865.0008.  This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society. See also A dynamical theory of the electromagnetic field.
  46. ^ M. Born and E. Wolf (1999). Principle of Optics. Cambridge: Cambridge University Press. ISBN 0-521-64222-1.
  47. ^ J. Goodman (2005). Introduction to Fourier Optics (ấn bản 3). Roberts & Co Publishers. ISBN 0-9747077-2-4. 
  48. ^ A. E. Siegman (1986). Lasers. University Science Books. ISBN 0-935702-11-3.  Chapter 16.
  49. ^ a ă â b H. D. Young (1992). University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. Chapter 37
  50. ^ a ă P. Hariharan (2003). Optical Interferometry (ấn bản 2). San Diego, USA: Academic Press. ISBN 0-12-325220-2. 
  51. ^ E. R. Hoover (1977). Cradle of Greatness: National and World Achievements of Ohio's Western Reserve. Cleveland: Shaker Savings Association. 
  52. ^ J. L. Aubert (1760). Memoires pour l'histoire des sciences et des beaux arts. Paris: Impr. de S. A. S.; Chez E. Ganeau. tr. 149. 
  53. ^ D. Brewster (1831). A Treatise on Optics. London: Longman, Rees, Orme, Brown & Green and John Taylor. tr. 95. 
  54. ^ R. Hooke (1665). Micrographia: or, Some physiological descriptions of minute bodies made by magnifying glasses. London: J. Martyn and J. Allestry. ISBN 0-486-49564-7. 
  55. ^ H. W. Turnbull (1940–1941). “Early Scottish Relations with the Royal Society: I. James Gregory, F.R.S. (1638–1675)”. Notes and Records of the Royal Society of London 3: 22. doi:10.1098/rsnr.1940.0003. JSTOR 531136. 
  56. ^ T. Rothman (2003). Everything's Relative and Other Fables in Science and Technology. New Jersey: Wiley. ISBN 0-471-20257-6. 
  57. ^ a ă â b H. D. Young (1992). University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. Chapter 38
  58. ^ R. S. Longhurst (1968). Geometrical and Physical Optics, 2nd Edition. London: Longmans. 
  59. ^ Lucky Exposures: Diffraction limited astronomical imaging through the atmosphere by Robert Nigel Tubbs
  60. ^ C. F. Bohren and D. R. Huffman (1983). Absorption and Scattering of Light by Small Particles. Wiley. ISBN 0-471-29340-7. 
  61. ^ a ă J. D. Jackson (1975). Classical Electrodynamics (ấn bản 2). Wiley. tr. 286. ISBN 0-471-43132-X. 
  62. ^ a ă R. Ramaswami and K. N. Sivarajan (1998). Optical Networks: A Practical Perspective. London: Academic Press. ISBN 0123740924. 
  63. ^ Brillouin, Léon. Wave Propagation and Group Velocity. Academic Press Inc., New York (1960)
  64. ^ M. Born and E. Wolf (1999). Principle of Optics. Cambridge: Cambridge University Press. tr. 14–24. ISBN 0-521-64222-1. 
  65. ^ a ă â b c H. D. Young (1992). University Physics 8e. Addison-Wesley. ISBN 0-201-52981-5. Chapter 34
  66. ^ F. J. Duarte (2003). Tunable Laser Optics. New York: Elsevier-Academic. tr. 87–90. ISBN 0-12-222696-8. 

Tham khảo[sửa | sửa mã nguồn]

Các chủ đề chính trong quang học
Vật liệu quang học | Cách tử | Dụng cụ quang học | Giao thoa | Kính hiển vi | Khúc xạ | Lăng kính | Ma trận quang | Nhiễu xạ | Phản xạ | Phân cực | Quang học Fourier | Quang học Hamilton | Quang học phi tuyến | Quang sai | Sợi quang học | Tán xạ