Song song

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Đồ thị vẽ a và b là hai đường thẳng song song

Trong hình học afin, sự song song là một đặc tính của các đường thẳng, mặt phẳng, hoặc tổng quát hơn là các không gian afin. Ban đầu, khái niệm song song do Euclide đặt ra trong tác phẩm Cơ sở (Euclid), bộ sách về toán họchình học nổi tiếng của ông. Theo thời gian, khái niệm này đã chuyển đổi từ một định nghĩa mang tính tiên đề sang một định nghĩa hình học thông thường.

Nhận biết hai đường thẳng song song[sửa | sửa mã nguồn]

Hai đường thẳng được gọi là song song khi có một đường thẳng thứ ba cắt hai đường thẳng trên và tạo với hai đường thẳng đó:

  • Hai góc so le trong bằng nhau; hoặc
  • Hai góc đồng vị bằng nhau; hoặc
  • Hai góc trong cùng phía bù nhau.

Trong hình học Euclide[sửa | sửa mã nguồn]

Các nguyên lý Euclide[sửa | sửa mã nguồn]

Trong hình học Euclide, hai đường thẳng được gọi là song song khi chúng cùng nằm trên một mặt phẳng và không có điểm chung. Trong trường hợp này, chúng được gọi là không cắt nhau, không giao nhau, hoặc không tiếp xúc nhau.

Hai đường thẳng bất kỳ trong hình học phẳng Euclide chỉ có thể rơi vào 3 trường hợp:

  • trùng nhau
  • cắt nhau tại ít nhất một điểm nào đó
  • song song với nhau

Quan hệ tương đương[sửa | sửa mã nguồn]

Nếu chấp nhận những đường thẳng trùng nhau là song song với nhau, ta thấy mối quan hệ song song mang các tính chất sau:

  • phản xạ: một đường thẳng là song song với chính nó,
  • đối xứng: Nếu một đường thẳng (d) song song với đường thẳng (d') thì (d') cũng song song với (d),
  • bắc cầu: Nếu một đường thẳng (d) song song với đường thẳng (d') và nếu (d') song song với (d") thì (d) cũng song song với (d").

Như vậy, ta kết luận: quan hệ song song là một mối quan hệ tương đương.

Trong hình học phi Euclide[sửa | sửa mã nguồn]

Mở rộng ra trên hình học phi Euclide, khái niệm đường thẳng được thay bằng khái niệm đường trắc địa. Hai đường trắc địa trong hình học phi Euclide chỉ có thể rơi vào 3 trường hợp:

  • cắt nhau tại ít nhất một điểm xác định nào đó
  • song song: cắt nhau tại một điểm ở vô cực (có điểm chung ở vô cực)
  • siêu song song: không bao giờ cắt nhau (không bao giờ có điểm chung)

Biểu tượng[sửa | sửa mã nguồn]

Biểu tượng để biểu thị sự song song là //. Ví dụ, nếu viết AB//CD, nghĩa là đường thẳng AB song song với đường thẳng CD.

Trong bộ mã Unicode, những biểu tượng song songkhông song song có code lần lượt là U+2225 (∥)U+2226 (∦). Chúng được xếp vào phạm vi Mathematical Operators.