Đơn ánh

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Đơn ánh

Một hàm số là đơn ánh khi nó áp dụng lên 2 đối số khác nhau luôn cho 2 giá trị khác nhau.

Một cách chặt chẽ, hàm f, xác định trên X và nhận giá trị trong Y, là đơn ánh nếu như nó thỏa mãn điều kiện với mọi x1 và x2 thuộc X và nếu x1 ≠ x2 thì f(x1) ≠ f(x2).

Nghĩa là, hàm số f là đơn ánh khi và chỉ khi:

Với đồ thị hàm số y = f(x) trong hệ tọa độ Đề các, mọi đường thẳng vuông góc với trục đối số Ox sẽ chỉ cắt đường cong đồ thị tại nhiều nhất là một điểm

Tham khảo[sửa | sửa mã nguồn]