Nhận dạng tiếng nói

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Nhận dạng tiếng nói là một quá trình nhận dạng mẫu, với mục đích là phân lớp (classify) thông tin đầu vào là tín hiệu tiếng nói thành một dãy tuần tự các mẫu đã được học trước đó và lưu trữ trong bộ nhớ. Các mẫu là các đơn vị nhận dạng, chúng có thể là các từ, hoặc các âm vị. Nếu các mẫu này là bất biến và không thay đổi thì công việc nhận dạng tiếng nói trở nên đơn giản bằng cách so sánh dữ liệu tiếng nói cần nhận dạng với các mẫu đã được học và lưu trữ trong bộ nhớ. Khó khăn cơ bản của nhận dạng tiếng nói đó là tiếng nói luôn biến thiên theo thời gian và có sự khác biệt lớn giữa tiếng nói của những người nói khác nhau, tốc độ nói, ngữ cảnh và môi trường âm học khác nhau. Xác định những thông tin biến thiên nào của tiếng nói là có ích và những thông tin nào là không có ích đối với nhận dạng tiếng nói là rất quan trọng. Đây là một nhiệm vụ rất khó khăn mà ngay cả với các kỹ thuật xác suất thống kê mạnh cũng khó khăn trong việc tổng quát hoá từ các mẫu tiếng nói những biến thiên quan trọng cần thiết trong nhận dạng tiếng nói.

Các nghiên cứu về nhận dạng tiếng nói dựa trên ba nguyên tắc cơ bản:

  • Tín hiệu tiếng nói được biểu diễn chính xác bởi các giá trị phổ trong một khung thời gian ngắn (short-term amplitude spectrum). Nhờ vậy ta có thể trích ra các đặc điểm tiếng nói từ những khoảng thời gian ngắn và dùng các đặc điểm này làm dữ liệu để nhận dạng tiếng nói.
  • Nội dung của tiếng nói được biểu diễn dưới dạng chữ viết, là một dãy các ký hiệu ngữ âm. Do đó ý nghĩa của một phát âm được bảo toàn khi chúng ta phiên âm phát âm thành dãy các ký hiệu ngữ âm.
  • Nhận dạng tiếng nói là một quá trình nhận thức. Thông tin về ngữ nghĩa (semantics) và suy đoán (pragmatics) có giá trị trong quá trình nhận dạng tiếng nói, nhất là khi thông tin về âm học là không rõ ràng.

Các cách tiếp cận nhận dạng tiếng nói bằng thống kê bao gồm: sử dụng mô hình Markov ẩn, mạng nơ-ron, sử dụng cơ sở tri thức, v.v..