Đường tròn

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm

Trong hình học phẳng, đường tròn (hoặc vòng tròn) là tập hợp của tất cả những điểm trên một mặt phẳng, cách đều một điểm cho trước bằng một khoảng cách nào đó. Điểm cho trước gọi là tâm của đường tròn, còn khoảng cho trước gọi là bán kính của đường tròn.

Đường tròn là một hình khép kín đơn giản chia mặt phẳng ra làm 2 phần: phần bên trong và phần bên ngoài. Trong khi "đường tròn" ranh giới của hình, "hình tròn" bao gồm cả ranh giới và phần bên trong.

Đường tròn
Một đường tròn (đen) với chu vi (C), đường kính (D, xanh), bán kính (R, đỏ) và tâm (O, hồng)

Đường tròn cũng được định nghĩa là một hình elíp đặc biệt với hai tiêu điểm trùng nhau và tâm sai bằng 0. Đường tròn cũng là hình bao quanh nhiều diện tích nhất trên mỗi đơn vị chu vi bình phương.

Thuật ngữ[sửa | sửa mã nguồn]

  • Hình khuyên (hình nhẫn): vùng bị giới hạn bởi 2 đường tròn đồng tâm.
  • Cung: một đoạn đóng bất kì trên đường tròn.
  • Tâm: điểm cách đều tất cả các điểm trên đường tròn.
  • Dây cung: đoạn thẳng có 2 đầu mút nằm trên đường tròn.
  • Chu vi hình tròn: độ dài đường biên giới hạn hình tròn.
  • Đường kính: đoạn thẳng có 2 đầu mút nằm trên đường tròn và đi qua tâm, hoặc khoảng cách dài nhất giữa 2 điểm trên đường tròn. Đường kính là dây cung dài nhất của đường tròn và bằng 2 lần bán kính.
  • Hình tròn: phần mặt phẳng giới hạn bởi đường tròn.
  • Bán kính: là đoạn thẳng (hay độ dài đoạn thẳng) nối tâm với một điểm bất kì trên đường tròn và bằng một nửa đường kính.
  • Hình quạt tròn: phần của hình tròn giới hạn bởi hai bán kính và cung tròn chắn bởi hai bán kính này.
  • Hình viên phân: phần bị giới hạn bởi cung tròn và dây căng cung.
  • Cát tuyến: đường thẳng trên mặt phẳng cắt đường tròn tại 2 điểm.
  • Hình bán nguyệt: cung căng đường kính. Thông thường, thuật ngữ này còn ba gồm đường kính, cung căng đường kính và phần bên trong, tức nửa hình tròn. Nửa hình tròn là một hình viên phân đặc biệt, là hình viên phân lớn nhất.
  • Tiếp tuyến: đường thẳng tiếp xúc với đường tròn tại một điểm duy nhất.
Dây cung, đường kính, bán kính, cát tuyến và tiếp tuyến của đường tròn
Hình quạt tròn và cung tròn (cung)

Hình tròn[sửa | sửa mã nguồn]

Bài chi tiết: Hình tròn

Trong hình học phẳng, đường tròn và hình tròn là hai khái niệm khác nhau. Hình tròn là tập hợp tất cả các điểm nằm trong và nằm trên đường tròn hay tạp hợp các điểm cách tâm một khoảng nhỏ hơn hoặc bằng bán kính Đường tròn không có diện tích như hình tròn mà chỉ có chu vi.

Lịch sử[sửa | sửa mã nguồn]

Chiếc com-pa trong bản thảo viết tay từ thế kỉ 13 là biểu tượng của Đấng tạo hóa. Đồng thời vòng hào quang cũng có dạng tròn.

Từ circle có nguồn gốc từ tiếng Hy Lap κίρκος/κύκλος (kirkos/kuklos), nghĩa là "vòng" hay "nhẫn".[1]

Một mảnh lụa Mông Cổ hình tròn
Đường tròn trong những bản vẽ thiên văn Ả Rập cổ.

Đường tròn đã được biết đến từ trước khi lịch sử ghi nhận được. Những hình tròn trong tự nhiên hẳn đã được quan sát, ví dụ như Mặt Trăng, Mặt Trời,... Đường tròn là nền tảng để phát triển bánh xe, mà cùng với những phát minh tương tự như bánh răng, là thành phần quan trọng trong máy móc hiện đại. Trong toán học, việc nghiên cứu đường tròn đã dẫn đến sự phát triển của hình học, thiên văn họcvi tích phân.

Khoa học sơ khai, đặc biệc là hình học, thiên văn học và chiêm tinh học, thường được nhiều học giả thời trung cổ kết nối với thánh thần, và nhiều người tin rằng có gì đó "thiêng liêng" và "hoàn hảo" ở hình tròn.[2][3]

Một số dấu mốc trong lịch sử đường tròn:

  • 1700 trước Công nguyên– Bản giấy cói Rhind đưa ra phương pháp để tính diện tích hình tròn. Kết quả tương đương với 256/81 (3.16049...) như một giá trị xấp xỉ của π.[4]
  • 300 trước Công nguyên – Quyển 1, Quyển 3 của bô sách Cơ sở của Euclid đưa ra định nghĩa và bàn về những tính chất của đường tròn.
  • Trong Bức thư thứ bảy của Plato có một định nghĩa chi tiết và giải thích về đường tròn. Plato viết về một đường tròn hoàn hảo, và sự khác biệt của nó với bất kì hình vẽ, giải thích hay định nghĩa nào khác.
  • 1880 – Lindemann chứng minh được πsố siêu việt, giải quyết trọn vẹn bài toán cầu phương hình tròn sau hơn một thiên niên kỷ.[5]
Tháp Tughrul nhìn từ bên trong

Kết quả phân tích[sửa | sửa mã nguồn]

Chu vi đường tròn[sửa | sửa mã nguồn]

Tỉ số của chu vi đường tròn với đường kính của nó là π (pi), một hằng số vô tỉ có giá trị xấp xỉ bằng 3.141592654, vậy chu vi của đường tròn (còn được gọi là viên chu), là độ dài của đường tròn, bằng tích của pi với đường kính hoặc 2 lần pi nhân với bán kính. Công thức:

Diện tích bao kín[sửa | sửa mã nguồn]

Bài chi tiết: Diện tích hình tròn

Trong bản luận Sự đo đạc của một hình tròn của Archimedes, diện tích hình tròn A bằng diện tích của tam giác có cạnh đáy bằng chu vi đường tròn và đường cao bằng bán kính hình tròn,[6] tức A bằng π nhân cho bình phương bán kính:

Tương tự, ký hiệu đường kính là d,

tức khoảng 79% diện tích hình vuông ngoại tiếp đường tròn (với độ dài cạnh là d). Đường tròn cũng là hình phẳng bao kín nhiều diện tích nhất với chu vi cho trước.

Phương trình[sửa | sửa mã nguồn]

Hệ tọa độ Descartes[sửa | sửa mã nguồn]

Đường tròn có bán kính r = 1, tâm (a, b) = (1.2, −0.5)

Trong hệ tọa độ Descartes, vòng tròn có tâm tại (a, b) và bán kính r là tập hợp tất cả các điểm (x, y) thỏa mãn:

Phương trình này, được biết là Phương trình đường tròn, xuất phát từ Định lý Pytago áp dụng cho một điểm trên đường tròn: Như trong hình bên, bán kính là cạnh huyền của một tam giác vuông với 2 cạnh góc vuông |xa| và |yb|. Nếu tâm đường tròn nằm ở gốc tọa độ (0, 0), thì phương trình được thu gọn thành:

Phương trình có thể viết dưới dạng tham số sử dụng các hàm lượng giác sin và cosine như sau

với t là tham số trong khoảng từ 0 đến 2π, một cách hình học, t tương đương với góc tạo bởi tia đi qua (a, b), (x, y) và trục x dương.

Một phương trình tham số khác của đường tròn là:

Tuy nhiên ở sự tham số hóa này, t không chỉ chạy qua tất cả số thực mà còn chạy tới vô hạn, nếu không thì điểm dưới cùng của đường tròn sẽ không được thể hiện.

Trong hệ tọa độ đồng nhất, mỗi đường conic với phương trình của đường tròn có dạng:

Hệ tọa độ cực[sửa | sửa mã nguồn]

Trong hệ tọa độ cực phương trình của một đường tròn là:

với a là bán kính của đường tròn, là tọa độ cực của một điểm trên đường tròn, và là tọa độ cực của tâm đường tròn (tức r0 là khoảng cách từ gốc tọa độ đến tâm, và φ góc ngược chiều kim đồng hồ từ trục hoành đường thẳng đi qua tâm và gốc tọa độ). Với đường tròn có tâm ở gốc tọa độ, tức r0 = 0, thì được đơn giản hóa còn r = a. Khi r0 = a, hay gốc tọa độ nằm trên đường tròn thì phương trình trở thành:

Trong trường hợp tổng quát, ta có thể giải phương trình cho r

Chú ý rằng nếu không có dấu ±, trong một số trường hợp phương trình chỉ mô tả nửa đường tròn.

Mặt phẳng phức[sửa | sửa mã nguồn]

Trong mặt phẳng phức, một đường tròn có tâm tại c và bán kính (r) có phương trình . Ở dạng tham số hóa: .

Phương trình tổng quát cho các số thực p, q và số phức g đôi khi được gọi là đường tròn tổng quát. Phương trình này trở thành phương trình ở trên với , vì . Không phải đường tròn tổng quát nào cũng là đường tròn thực sự: đường tròn tổng quát hoặc là đường tròn thực sự hoặc là một đường thẳng.

Đường tiếp tuyến[sửa | sửa mã nguồn]

Đường tiếp tuyến qua một điểm P trên đường tròn vuông góc đường kính đi qua P. Nếu P = (x1, y1) và đường tròn có tâm (a, b) và bán kính r, thì tiếp tuyến vuông góc với đường thẳng đi qua (a, b) và (x1, y1), nên nó có dạng (x1a)x + (y1b)y = c. Tính với (x1, y1) xác định giá trị của c và kết quả phương trình của đường tiếp tuyến là:

hay

Nếu y1b thì độ dốc của đường thẳng là

Kết quả này cũng có thể được suy ra sử dụng đạo hàm hàm ẩn.

Nếu tâm đường tròn nằm ở gốc tọa độ thì phương trình tiếp tuyến là

và độ dốc của nó là

Tính chất[sửa | sửa mã nguồn]

Dây cung[sửa | sửa mã nguồn]

  • Dây cung cách đều tâm khi và chỉ khi chúng dài bằng nhau.
  • Đường trung trực của dây cung đi qua tâm đường tròn. Do tính duy nhất của đường trung trực, ta có những mệnh đề tương đương sau:
    • Đường vuông góc hạ từ tâm xuống dây cung chia đôi dây cung đó.
    • Đoạn thẳng nối tâm và trung điểm dây cung thì vuông góc với dây cung.
  • Nếu một góc ở tâm và góc nội tiếp cùng bị chắn bởi một dây cung và nằm cùng phía với dây cung thì góc ở tâm lớn gấp đôi góc nội tiếp.
  • Hai góc cùng bị chắn và nằm cùng phía với một dây cung thì bằng nhau.
  • Hai góc cùng bị chắn và nằm khác phía với một dây cung thì bù nhau.
  • Góc nội tiếp chắn bởi đường kính là góc vuông (định lý Thales).
  • Đường kính là dây cung dài nhất trong đường tròn
  • Nếu giao điểm hai dây cung cắt nhau chia một dây thành hai đoạn a và b, chia dây cung kia thành c và d, thì ab = cd.
  • Nếu giao điểm hai dây cung cắt nhau chia một dây thành hai đoạn a và b, chia dây cung kia thành c và d, thì a2 + b2 + c2 + d2  bằng bình phương đường kính.
  • Tổng bình phương chiều dài 2 dây cung vuông góc tại một điểm cố định không đổi và bằng 8r2 – 4p2 (r là bán kính đường tròn, p là khoảng cách từ tâm đường tròn đến giao điểm).
  • Khoảng cách từ một điểm trên đường tròn đến một dây cung nhân đường kính bằng tích của khoảng cách điểm đó đến 2 đầu mút của dây cung.

Tiếp tuyến[sửa | sửa mã nguồn]

  • Đường thẳng vuông góc với bán kính tại đầu mút của bán kính nằm trên đường tròn là một đường tiếp tuyến với đường tròn.
  • Đường thẳng vuông góc với tiếp tuyến tại điểm tiếp xúc với đường tròn thì đi qua tâm.
  • Từ một điểm nằm ngoài đường tròn luôn vẽ được hai tiếp tuyến với đường tròn vá có độ dài bằng nhau.
  • Nếu hai tiếp tuyến tại A và B với đường tròn tâm O cắt nhau tại P thì góc BOA và góc BPA bù nhau.
  • Nếu AD đường tròn tại A và AQ một dây cung của đường tròn, thì .

Định lý[sửa | sửa mã nguồn]

Định lý hai cát tuyến
  • Định lý dây cung phát biểu nếu hai dây cung, CD và EB, cắt nhau tại A thì AC × AD = AB × AE.
  • Nếu hai cát tuyến, AE và AD, cắt đường tròn lần lượt tại B và C thì AC × AD = AB × AE. (Hệ quả của định lý dây cung)
  • Một tiếp tuyến có thể coi như một giới hạn của cát tuyến với đầu mút trùng nhau. Nếu tiếp tuyến từ điểm A nằm ngoài đường tròn cắt đường tròn tại F và một cát tuyến từ A cắt đường tròn lần lượt tại C và D thì AF2 = AC × AD. (Định lý tiếp tuyến-cát tuyến)
  • Góc nằm giữa một dây cung và tiếp tuyến tại một đầu dây cung bằng một nửa góc ở tâm bị chắn bởi dây cung đó (Tangent Chord Angle).
  • Nếu góc ở tâm bị chắn bởi chắn bởi dây cung là góc vuông thì  = r√2, với  là độ dài dây cung và r là bán kính đường tròn.
  • Nếu hai cát tuyến cắt đường tròn như bên thì góc A bằng nửa hiệu hai cung tạo thành (DE và BC), tức , với O là tâm đường tròn. Đây là định lý 2 cát tuyến với đường tròn.

Góc nội tiếp[sửa | sửa mã nguồn]

Định lý góc nội tiếp

Một góc nội tiếp (góc màu xanh biển và xanh lục trong hình) bằng một nửa góc ở tâm tương ứng (đỏ). Do đó, tất cá góc chắn cùng một cung (hồng) thì bằng nhau. Đặc biệt, tất cả góc chắn đường kính là một góc vuông (do góc ở tâm khi ấy là 180 độ).

Sagitta[sửa | sửa mã nguồn]

Sagitta là đoạn thẳng xanh.
  • Sagitta (còn được biết là versine) là đoạn thẳng vuông góc với dây cung, đi qua trung điểm của dây cung và cung mà dây đó chắn.
  • Cho độ dài y của dây và độ dài x sagitta, ta có thể dùng định lý Pytago để tính bán kính của đường tròn duy nhất vừa với 2 đoạn thẳng:

Một chứng minh khác của kết quả này sử dụng tính chất hai dây cung như sau: Cho dây cung có độ dài y và sagitta có độ dài x, vì sagitta đi qua trung điểm của dây cung, nó phải là một phần đường kính. Do đường kính dài gấp đôi bán kinh, phần "bị thiếu" của đường kính có độ dài (2rx). Do một phần của một dây cung này nhân phần kia không đổi khi dây quay quanh giao điểm, ta tìm được . Giải tìm r, ta nhận được kết quả như trên.

Dựng hình[sửa | sửa mã nguồn]

Có nhiều phép dựng hình bằng thước kẻ và compa cho ra đường tròn.

Đơn giản và căn bản nhất là phép dựng hình đã biết tâm đường tròn và một điểm nằm trên đường tròn. Đặt chân trụ của com-pa trên tâm, chân xoay lên điểm trên đường tròn và quay com-pa.

Dựng đường với đường kính cho trước[sửa | sửa mã nguồn]

  • Dựng trung điểm M của đường kính.
  • Dựng đường tròn với tâm M đi qua một đầu mút của đường kính (nó cũng sẽ qua đầu mút còn lại).
Dựng đường tròn qua ba điểm A, B, C bằng cách tìm đường trung trực (đỏ) của các cạnh tam giác (xanh). Chỉ cần hai trong số ba đường trung trực là đủ để xác định tâm đường tròn.

Dựng đường tròn đi qua ba điểm không thẳng hàng[sửa | sửa mã nguồn]

  • Gọi ba điểm đó là P, QR,
  • Dựng đường trung trực của đoạn PQ.
  • Dựng đường trung trực của đoạn PR.
  • Gọi giao điểm hai đường trung trực là M. (Chúng cắt nhau vì các điểm không thẳng hàng collinear).
  • Dựng đường tròn tâm M đi qua một trong các điểm P, Q hay R (nó cũng sẽ qua hai điểm còn lại).

Đường tròn của Apollonius[sửa | sửa mã nguồn]

Bài chi tiết: Circles of Apollonius
Định nghĩa đường tròn của Apollonius: d1/d2 constant

Apollonius của Pergaeus chỉ ra rằng đường tròn còn có thể định nghĩa là tập hợp các điểm trên mặt phẳng có tỉ số không đổi (khác 1) của khoảng cách tới hai tiêu điểm, AB.[7][8] (Nếu tỉ số là 1 thì tập hợp ấy là đường trung trực của đoạn thẳng AB.)

Chứng minh gồm hai phần. Đầu tiên ta cần chứng mình, cho hai tiêu điểm AB một tỉ số, bất kì điểm P thỏa mãn tỉ số phải nằm trên một đường tròn nhất định. Gọi C là một điểm thỏa mãn tỉ số và nằm trên đoạn thẳng AB. Từ định lý đường phân giác suy ra PC sẽ chia đôi góc trong APB:

Tương tự, đoạn thẳng PD qua điểm D trên đường thẳng AB chia đôi góc ngoài BPQ với Q nằm trên tia AP kéo dài. Do góc ngoài và góc trong bù nhau, góc CPD phải bằng 90 độ. Tập hợp các điểm P sao cho góc CPD là góc vuông tạo thành một đường tròn với CD là đường kính.

Thứ hai, xem [9]:tr.15 để chứng minh rằng các điểm trên đường tròn vừa tạo thỏa mãn tỉ số.

Tỉ số kép[sửa | sửa mã nguồn]

Một tính chất của đường tròn liên quan đến hình học của tỉ số kép của các điểm trên mặt phẳng phức. Nếu A, B, và C cho như trên thì đường tròn của Apollonius của ba điểm là tập hợp các điểm P sao cho giá trị tuyệt đối của tỉ số kép bằng 1:

Nói cách khác, P là điểm trên đường tròn của Apollonius khi và chỉ khi tỉ số kép (A,B;C,P) nằm trên đường tròn đơn vị trên mặt phẳng phức.

Đường tròn tổng quát[sửa | sửa mã nguồn]

Nếu Ctrung điểm của đoạn AB thì tập hợp các điểm P thỏa mãn điều kiện Apollonius

 

không tạo thành một đường tròn mà thành một đường thẳng.

Vậy nên nếu A, B, C là các điểm phân biệt trên mặt phẳng thì quỹ tích điểm P thỏa mãn phương trình trên gọi là "đường tròn tổng quát". Nó có thể là một đường tròn hoặc một đường thẳng. Trong trường hợp này, một đường thẳng là một đường tròn tổng quát có bán kính vô hạn.

Đường tròn nội tiếp hay ngoại tiếp[sửa | sửa mã nguồn]

Trong mỗi tam giác, một đường tròn duy nhất, gọi là đường tròn nội tiếp, có thể nội tiếp sao cho nó tiếp xúc với ba cạnh tam giác.[10]

Với mội tam giác một đường tròn duy nhất, gọi là đường tròn ngoại tiếp, can be circumscribed such that it goes through each of the triangle's three vertices.[11]

Một đa giác ngoại tiếp, ví dụ như tứ giác nội tiếp, là một đa giác lồi bất kỳ mà một đường tròn có thể nội tiếp được và tiếp xúc với các cạnh của đa giác.[12] Tất cả đa giác đều và tam giác đều là một đa giác ngoại tiếp.

Một đa giác nội tiếp là một đa giác lồi bất kỳ mà một đường tròn có thể bao quanh, đi qua tất cá các đỉnh. Một trường hợp được nghiên cứu kỹ càng là tứ giác nội tiếp. Tất cả đa giác đều và tam giác đều là một đa giác nội tiếp. Một đa giác vừa ngoại tiếp vừa nội tiếp được gọi là đa giác lưỡng tâm.

Một đường cong hypocycloid là đường cong nằm trong một đường tròn, vẽ bằng cách theo dấu một điểm cố định trên một đường tròn nhỏ hơn lăn trong đường tròn đã cho và tiếp xúc với nó..

Đường tròn dưới dạng đặc biệt của những hình khác[sửa | sửa mã nguồn]

Đường tròn có thể xem là một trường hợp giới hạn của một số hình khác:

  • Một đường cong Decartes là tập hợp các điểm sao cho tổng trọng số của khoảng cách từ điểm đó đến hai điểm cố định (tiêu điểm) là một hằng số. Một elíp là trường hợp các trọng số bằng nhau. Một đường tròn là một elíp có độ lệch tâm bằng 0, nghĩa là hai tiêu điểm trùng nhau tạo thành tâm đường tròn. Một đường tròn cũng là một đường cong Descartes đặc biệt với một trọng số bằng 0.
  • Một siêu elíp (hay đường cong Lamé) có phương trình dạng với a, b, n dương. Một siêu đường tròn có b = a. Một đường tròn là trường hợp đặc biệt của siêu đường tròn với n = 2.
  • Một đường oval Cassini là tập hợp các điểm sao cho tích khoảng cách từ điểm đó đến hai điểm cố định là một hằng số. Khi hai tiêu điểm trùng nhau, một đường tròn hình thành.
  • Một đường cong có chiều rộng không đổi là một hình có chiều rộng, định nghĩa bằng giữa hai đường thẳng song song phân biệt tiếp xúc với hình đó, không thay đổi bất kể hướng của hai đường thẳng đó. Đường tròn là ví dụ đơn giản nhất cho đường cong này.

Cầu phương hình tròn[sửa | sửa mã nguồn]

Cầu phương hình tròn là bài toán đưa ra bỏi các nhà hình học cổ đại, yêu cầu dựng một hình vuông có diện tích bằng diện tích một hình tròn đã cho trong hữu hạn bước bằng thước thẳng và com-pa.

Năm 1882, bài toán được chứng minh là không thể thực hiện được, như một hệ quả của định lý Lindemann–Weierstrass chứng minh rằng pi (π) là một số siêu việt, chứ không phải là một số đại số vô tỉ; nghĩa là nó không phải là nghiệm của bất cứ đa thức với hệ số hữu tỉ.

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]

  1. ^ krikos, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. ^ Arthur Koestler, The Sleepwalkers: A History of Man's Changing Vision of the Universe (1959)
  3. ^ Proclus, The Six Books of Proclus, the Platonic Successor, on the Theology of Plato Tr. Thomas Taylor (1816) Tập 2, Chương 2, "Of Plato"
  4. ^ Chronology for 30000 BC to 500 BC. History.mcs.st-andrews.ac.uk. Truy cập 03-05-2013.
  5. ^ Squaring the circle. History.mcs.st-andrews.ac.uk. Trụy cập 03-05-2013.
  6. ^ Katz, Victor J. (1998), A History of Mathematics / An Introduction (ấn bản 2), Addison Wesley Longman, tr. 108, ISBN 978-0-321-01618-8 
  7. ^ Harkness, James (1898). Introduction to the theory of analytic functions. London, New York: Macmillan and Co. tr. 30. [liên kết hỏng]
  8. ^ Ogilvy, C. Stanley, Excursions in Geometry, Dover, 1969, 14–17.
  9. ^ Altshiller-Court, Nathan, College Geometry, Dover, 2007.
  10. ^ Incircle – from Wolfram MathWorld Lưu trữ 2012-01-21 tại Wayback Machine.. Mathworld.wolfram.com (2012-04-26). Retrieved on 2012-05-03.
  11. ^ Circumcircle – from Wolfram MathWorld Lưu trữ 2012-01-20 tại Wayback Machine.. Mathworld.wolfram.com (2012-04-26). Retrieved on 2012-05-03.
  12. ^ Tangential Polygon – from Wolfram MathWorld Lưu trữ 2013-09-03 tại Wayback Machine.. Mathworld.wolfram.com (2012-04-26). Retrieved on 2012-05-03.

Liên kết ngoài[sửa | sửa mã nguồn]

Các chủ đề chính trong toán học
Nền tảng toán học | Đại số | Giải tích | Hình học | Lý thuyết số | Toán học rời rạc | Toán học ứng dụng |
Toán học giải trí | Toán học tô pô | Xác suất thống kê