Khác biệt giữa bản sửa đổi của “Vũ trụ”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
Không có tóm lược sửa đổi
Không có tóm lược sửa đổi
Dòng 255: Dòng 255:
{{chính|Năng lượng tối}}
{{chính|Năng lượng tối}}
Tại sao sự giãn nở của Vũ trụ lại tăng tốc vẫn là một câu hỏi hóc búa đối với các nhà vũ trụ học. Người ta thường cho rằng "năng lượng tối", một dạng năng lượng bí ẩn với giả thuyết mật độ không đổi và có mặt khắp nơi trong Vũ trụ là nguyên nhân của sự giãn nở này.<ref name="peebles(a)">{{cite journal|author=Peebles, P. J. E. and Ratra, Bharat |title=The cosmological constant and dark energy|year=2003|journal=Reviews of Modern Physics|arxiv=astro-ph/0207347|volume=75|issue=2|pages=559–606|doi = 10.1103/RevModPhys.75.559|bibcode=2003RvMP...75..559P}}</ref> Theo [[sự tương đương khối lượng-năng lượng|nguyên lý tương đương khối lượng-năng lượng]], trong phạm vi cỡ thiên hà, mật độ của năng lượng tối (~ 7 × 10<sup>−30</sup> g/cm<sup>3</sup>) nhỏ hơn rất nhiều so với mật độ của vật chất thông thường hay của năng lượng tối chứa trong thể tích của một thiên hà điển hình. Tuy nhiên, trong thời kỳ năng lượng tối thống trị hiện nay, nó lấn át thành phần khối lượng-năng lượng của Vũ trụ bởi vì sự phân bố đồng đều của nó ở khắp nơi trong không gian.<ref>{{cite journal|title=Why the cosmological constant is small and positive|authors=Paul J. Steinhardt, Neil Turok|journal=Science|volume=312|issue=5777|page=1180-1183|doi=10.1126/science.1126231 |arxiv=astro-ph/0605173|year=2006}}</ref><ref>{{cite web | url=http://hyperphysics.phy-astr.gsu.edu/hbase/astro/dareng.html | title=Dark Energy | work=Hyperphysics | accessdate=January 4, 2014}}</ref>
Tại sao sự giãn nở của Vũ trụ lại tăng tốc vẫn là một câu hỏi hóc búa đối với các nhà vũ trụ học. Người ta thường cho rằng "năng lượng tối", một dạng năng lượng bí ẩn với giả thuyết mật độ không đổi và có mặt khắp nơi trong Vũ trụ là nguyên nhân của sự giãn nở này.<ref name="peebles(a)">{{cite journal|author=Peebles, P. J. E. and Ratra, Bharat |title=The cosmological constant and dark energy|year=2003|journal=Reviews of Modern Physics|arxiv=astro-ph/0207347|volume=75|issue=2|pages=559–606|doi = 10.1103/RevModPhys.75.559|bibcode=2003RvMP...75..559P}}</ref> Theo [[sự tương đương khối lượng-năng lượng|nguyên lý tương đương khối lượng-năng lượng]], trong phạm vi cỡ thiên hà, mật độ của năng lượng tối (~ 7 × 10<sup>−30</sup> g/cm<sup>3</sup>) nhỏ hơn rất nhiều so với mật độ của vật chất thông thường hay của năng lượng tối chứa trong thể tích của một thiên hà điển hình. Tuy nhiên, trong thời kỳ năng lượng tối thống trị hiện nay, nó lấn át thành phần khối lượng-năng lượng của Vũ trụ bởi vì sự phân bố đồng đều của nó ở khắp nơi trong không gian.<ref>{{cite journal|title=Why the cosmological constant is small and positive|authors=Paul J. Steinhardt, Neil Turok|journal=Science|volume=312|issue=5777|page=1180-1183|doi=10.1126/science.1126231 |arxiv=astro-ph/0605173|year=2006}}</ref><ref>{{cite web | url=http://hyperphysics.phy-astr.gsu.edu/hbase/astro/dareng.html | title=Dark Energy | work=Hyperphysics | accessdate=January 4, 2014}}</ref>

Các nhà khoa học đã đề xuất hai dạng mà năng lượng tối có thể gán cho đó là [[hằng số vũ trụ học]], một mật độ năng lượng ''không đổi'' choán đầy không gian vũ trụ,<ref name="carroll">{{cite journal|author=Sean M. Carroll|year=2001|url=http://relativity.livingreviews.org/Articles/lrr-2001-1/index.html|title=The cosmological constant|journal=Living Reviews in Relativity|volume=4|accessdate=2006-09-28}}</ref> và [[lý thuyết trường vô hướng|các trường vô hướng]] như [[nguyên tố thứ năm (vật lý học)|nguyên tố thứ năm]] (quintessence) hoặc trường [[moduli (vật lý học)|moduli]], các đại lượng ''động lực'' mà mật độ năng lượng có thể thay đổi theo không gian và thời gian. Các đóng góp từ những trường vô hướng mà không đổi trong không gian cũng thường được bao gồm trong hằng số vũ trụ học. Ngoài ra, biến đổi nhỏ ở giá trị trường vô hướng bởi sự phân bố bất đồng nhất theo không gian khiến cho rất khó có thể phân biệt những trường này với mô hình hằng số vũ trụ. Vật lý lượng tử cũng gợi ý hằng số này có thể có nguồn gốc từ [[năng lượng chân không]] (ví dụ sự xuất hiện của [[hiệu ứng Casimir]]). Tuy vậy giá trị đo được cuả mật độ năng lượng tối lại nhỏ hơn 120 lần bậc độ lớn so với giá trị tính toán của [[lý thuyết trường lượng tử]].


== Phản vũ trụ ==
== Phản vũ trụ ==

Phiên bản lúc 16:49, ngày 21 tháng 6 năm 2016

Vũ Trụ
Ảnh của Hubble chụp lại những thiên hà xa nhất có thể nhìn thấy được bằng công nghệ hiện tại.
Tuổi13,799 ± 0,021 tỷ năm [1]
Đường kínhCó khả năng vô hạn; ít nhất 91 tỷ năm ánh sáng (28×10^9 pc) [2]
Khối lượng (vật chất thường)Ít nhất 1053 kg [3]
Mật độ trung bình4,5 x 10−31 g/cm3 [4]
Nhiệt độ trung bình2,72548 K [5]
Các thành phần chínhVật chất (baryon) thường (4,9%), vật chất tối (26,8%), năng lượng tối (68,3%)[6]
Hình họcHầu như phẳng với sai số biên chỉ 0,4%[7]


Vũ trụ bao gồm mọi thành phần của nó cũng như không gianthời gian.[8][9][10][11] Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ nhất, và mọi vật chấtnăng lượng. Vũ trụ quan sát được có đường kính vào khoảng 28 tỷ parsec (91 tỷ năm ánh sáng) trong thời điểm hiện tại.[2] Các nhà thiên văn chưa biết được kích thước toàn thể của Vũ trụ là bao nhiêu và có thể là vô hạn.[12] Những quan sát và phát triển của vật lý lý thuyết đã giúp suy luận ra thành phần và sự tiến triển của Vũ trụ.

Xuyên suốt các thư tịch lịch sử, các thuyết vũ trụ họctinh nguyên học, bao gồm các mô hình khoa học, đã từng được đề xuất để giải thích những hiện tượng quan sát của Vũ trụ. Các thuyết địa tâm định lượng đầu tiên đã được phát triển bởi các nhà triết học Hy Lạp cổ đạitriết học Ấn Độ.[13][14] Trải qua nhiều thế kỷ, các quan sát thiên văn ngày càng chính xác hơn đã đưa tới thuyết nhật tâm của Nicolaus Copernicus và, dựa trên kết quả thu được từ Tycho Brahe, cải tiến cho thuyết đó về quỹ đạo elip của hành tinh bởi Johannes Kepler, mà cuối cùng được Isaac Newton giải thích bằng lý thuyết hấp dẫn của ông. Những cải tiến quan sát được xa hơn trong Vũ trụ dẫn tới con người nhận ra rằng Hệ Mặt Trời nằm trong một thiên hà chứa hàng tỷ ngôi sao, gọi là Ngân Hà. Sau đó các nhà thiên văn phát hiện ra rằng thiên hà của chúng ta chỉ là một trong số hàng trăm tỷ thiên hà khác. Ở trên những quy mô lớn nhất, sự phân bố các thiên hà được giả địnhđồng nhấtnhư nhau trong mọi hướng, có nghĩa là Vũ trụ không có biên hay một tâm đặc biệt nào đó. Quan sát về sự phân bố và vạch phổ của các thiên hà đưa đến nhiều lý thuyết vật lý vũ trụ học hiện đại. Khám phá trong đầu thế kỷ 20 về sự dịch chuyển đỏ trong quang phổ của các thiên hà gợi ý rằng Vũ trụ đang giãn nở, và khám phá ra bức xạ nền vi sóng vũ trụ cho thấy Vũ trụ phải có thời điểm khởi đầu.[15] Gần đây, các quan sát vào cuối thập niên 1990 chỉ ra sự giãn nở của Vũ trụ đang gia tốc[16] cho thấy thành phần năng lượng chủ yếu trong Vũ trụ thuộc về một dạng chưa biết tới gọi là năng lượng tối. Đa phần khối lượng trong Vũ trụ cũng tồn tại dưới một dạng chưa từng biết đến hay là vật chất tối.

Lý thuyết Vụ Nổ Lớn là mô hình vũ trụ học được chấp thuận rộng rãi, nó miêu tả về sự hình thành và tiến hóa của Vũ trụ. Không gian và thời gian được tạo ra trong Vụ Nổ Lớn, và một lượng cố định năng lượng và vật chất choán đầy trong nó; khi không gian giãn nở, mật độ của vật chất và năng lượng giảm. Sau sự giãn nở ban đầu, nhiệt độ Vũ trụ giảm xuống đủ lạnh cho phép hình thành lên những hạt hạ nguyên tử đầu tiên và tiếp sau là những nguyên tử đơn giản. Các đám mây khổng lồ chứa những nguyên tố nguyên thủy này theo thời gian dưới ảnh hưởng của lực hấp dẫn kết tụ lại thành các ngôi sao. Nếu giả sử mô hình phổ biến hiện nay là đúng, thì tuổi của Vũ trụ có giá trị tính được từ những dữ liệu quan sát là 13,799 ± 0,021 tỷ năm.[1]

Có nhiều giả thiết đối nghịch nhau về số phận sau cùng của Vũ trụ. Các nhà vật lý và triết học vẫn không biết chắc về những gì, nếu bất cứ điều gì, có trước Vụ Nổ Lớn. Nhiều người phản bác những ước đoán, nghi ngờ bất kỳ thông tin nào từ trạng thái trước này có thể thu thập được. Có nhiều giả thuyết về đa vũ trụ, trong đó một vài nhà vũ trụ học đề xuất rằng Vũ trụ có thể là một trong nhiều vũ trụ cùng tồn tại song song với nhau.[17][18]

Định nghĩa

Vũ trụ có thể được định nghĩa là mọi thứ đang tồn tại, mọi thứ đã tồn tại, và mọi thứ sẽ tồn tại.[19][20][21] Theo như hiểu biết hiện tại, Vũ trụ chứa các thành phần: không thời gian, các dạng năng lượng (bao gồm bức xạ điện từvật chất), và các định luật vật lý liên hệ giữa chúng. Vũ trụ bao hàm mọi dạng sống, mọi lịch sử, và thậm chí một số nhà triết học và khoa học gợi ý rằng nó bao hàm các ý tưởng như toán họclogic.[22][23][24]

Từ nguyên

Từ universe bắt nguồn từ tiếng Pháp cổ của từ univers, mà lại có nguồn gốc từ tiếng Latinh universum.[25] Từ trong tiếng Latinh được Cicero sử dụng và sau đó các học giả Latinh sử dụng trong nhiều nghĩa như trong tiếng Anh hiện đại ngày nay sử dụng.[26]

Từ đồng nghĩa

Thuật ngữ cho "universe" sử dụng giữa các nhà triết học Hy Lạp cổ đại từ Pythagoras trở đi là τὸ πᾶν tò pân ("tất cả"), xác định như là mọi vật chất và mọi không gian, và τὸ ὅλον tò hólon ("mọi thứ"), mà không cần thiết bao gồm sự trống rỗng.[27][28] Một từ đồng nghĩa khác là [ὁ κόσμος ho kósmos] lỗi: {{lang}}: văn bản có thẻ đánh dấu in xiên (trợ giúp) (có nghĩa thế giới, hay cosmos).[29] Các từ đồng nghĩa khác cũng xuất hiện trong tiếng Latinh (totum, mundus, natura)[30] và tồn tại trong các tiếng hiện đại, ví dụ, tiếng Đức Das All, Weltall, và Natur cho Vũ trụ. Một số từ đồng nghĩa cũng có trong tiếng Anh, như everything (trong theory of everything), từ cosmos (trong cosmology), the world (trong many-worlds interpretation), và nature (trong natural law hoặc natural philosophy).[31]

Các tiến trình và Vụ Nổ Lớn

Mô hình được chấp thuận rộng rãi về nguồn gốc của Vũ trụ đó là lý thuyết Vụ Nổ Lớn.[32][33] Mô hình Vụ Nổ Lớn miêu tả trạng thái sớm nhất của Vũ trụ có mật độ và nhiệt độ cực kỳ lớn và sau đó trạng thái này giãn nở tại mọi điểm trong không gian. Mô hình dựa trên thuyết tương đối rộng và những giả thiết cơ bản như tính đồng nhất và đẳng hướng của không gian. Phiên bản của mô hình với hằng số vũ trụ học (Lambda) và vật chất tối lạnh, gọi là mô hình Lambda-CDM, là mô hình đơn giản nhất cung cấp cách giải thích hợp lý cho nhiều quan sát khác nhau trong Vũ trụ. Mô hình Vụ Nổ Lớn giải thích cho những quan sát như sự tương quan giữa khoảng cách và dịch chuyển đỏ của các thiên hà, tỉ lệ giữa số lượng nguyên tử hiđrô với nguyên tử heli, và bức xạ nền vi sóng vũ trụ.

Tiến trình của Vũ trụ
Trong hình này, trục thời gian hướng từ trái sang phải, do vậy ở một thời điểm bất kỳ, Vũ trụ được minh họa là một nhát cắt dọc theo biểu đồ.

Trạng thái nóng, đặc ban đầu được gọi là kỷ nguyên Planck, một giai đoạn ngắn kéo dài từ lúc thời gian bằng 0 cho tới một đơn vị thời gian Planck xấp xỉ bằng 10−43 giây. Trong kỷ nguyên Planck, mọi loại vật chất và mọi loại năng lượng đều tập trung trong một trạng thái đặc, nơi lực hấp dẫn được cho là trở lên mạnh ngang với các lực cơ bản khác, và tất cả các lực này có thể đã thống nhất làm một. Từ kỷ nguyên Planck, Vũ trụ đã giãn nở cho tới hình dạng hiện tại, mà có khả năng nó đã trải qua một giai đoạn lạm phát rất ngắn khiến cho kích thước của Vũ trụ đạt tới kích thước lớn hơn nhiều chỉ trong ít hơn 10−32 giây.[34] Giai đoạn này làm đều đặn đi các khối cục vật chất nguyên sơ của Vũ trụ và để lại nó trong trạng thái đồng đều và đẳng hướng như chúng ta quan sát thấy ngày nay. Các thăng giáng cơ học lượng tử trong suốt quá trình này để lại các thăng giáng mật độ trong Vũ trụ, mà sau đó trở thành mầm mống cho sự hình thành các cấu trúc trong Vũ trụ.[35]

Sau kỷ nguyên Planck và lạm phát tới các kỷ nguyên quark, hadron, và lepton. Theo Steven Weinberg, ba kỷ nguyên này kéo dài khoảng 13,82 giây sau thời điểm Vụ Nổ Lớn.[36] Sự xuất hiện của các nguyên tố nhẹ có thể được giải thích bằng lý thuyết dựa trên sự giãn nở của không gian kết hợp với vật lý hạt nhânvật lý nguyên tử.[37] Khi Vũ trụ giãn nở, mật độ năng lượng của bức xạ điện từ giảm nhanh hơn so với mật độ của vật chất bởi vì năng lượng của một photon giảm theo bước sóng của nó. Cùng với Vũ trụ giãn nở và nhiệt độ giảm đi, các hạt cơ bản kết hợp lại thành những hạt tổ hợp lớn hơn và ổn định hơn. Do vậy, chỉ vài giây sau Vụ Nổ Lớn, hình thành các hạt protonneutron ổn định và rồi hình thành lên các hạt nhân nguyên tử thông qua các phản ứng hạt nhân.[38][39] Quá trình này, gọi là tổng hợp hạt nhân Vụ Nổ Lớn, dẫn tới sự có mặt hiện nay của các hạt nhân nhẹ, bao gồm hiđrô, deuteri, và heli. Tổng hợp hạt nhân Vụ Nổ Lớn kết thúc sau khoảng 20 phút, khi nhiệt độ Vũ trụ giảm xuống mức không còn đủ để xảy ra các phản ứng tổng hợp hạt nhân nữa.[40] Ở giai đoạn này, vật chất trong Vũ trụ chủ yếu là plasma nóng đặc chứa các electron mang điện tích âm, các hạt neutrino trung hòa và các hạt nhân mang điện tích dương. Các hạt và phản hạt liên tục va chạm và hủy thành cặp photon và ngược lại. Kỷ nguyên này được gọi là kỷ nguyên photon, kéo dài trong khoảng 380 nghìn năm.[41]

Với photon không còn tương tác với vật chất nữa, Vũ trụ bước vào giai đoạn vật chất chiếm đa số về mật độ (matter-dominated era; lưu ý là giai đoạn này sau khoảng 47 nghìn năm kể từ Vụ Nổ Lớn,[42] bởi Vũ trụ vẫn như màn sương mờ đục-optical thick-đối với bức xạ. Trước giai đoạn này là bức xạ chiếm đa số và động lực của Vũ trụ bị chi phối bởi bức xạ.). Đến thời điểm của kỷ nguyên tái kết hợp - sau khoảng 380 nghìn năm, electron và các hạt nhân hình thành lên các nguyên tử ổn định, cho phép Vũ trụ trở lên trong suốt với sóng điện từ. Lúc này ánh sáng có thể lan truyền tự do trong không gian, và nó vẫn còn được quan sát cho tới tận ngày nay với tên gọi bức xạ nền vi sóng vũ trụ (CMB). Sau khoảng 100 đến 300 triệu năm, những ngôi sao đầu tiên bắt đầu hình thành; đây là những ngôi sao rất lớn, sáng và chịu trách nhiệm cho quá trình tái ion hóa của Vũ trụ. Bởi không có các nguyên tố nặng hơn liti từ giai đoạn tổng hợp hạt nhân Vụ Nổ Lớn, những ngôi sao này đã tạo ra các nguyên tố nặng đầu tiên bởi quá trình tổng hợp hạt nhân sao.[43] Vũ trụ cũng chứa một dạng năng lượng bí ẩn gọi là năng lượng tối; mật độ năng lượng của năng lượng tối không thay đổi theo thời gian. Sau khoảng 9,8 tỷ năm, Vũ trụ đã giãn nở đến mức độ khiến cho mật độ của vật chất nhỏ hơn mật độ của năng lượng tối, đánh dấu bắt đầu của giai đoạn năng lượng tối thống lĩnh Vũ trụ (dark-energy-dominated era).[44] Trong giai đoạn này, sự giãn nở gia tăng của Vũ trụ là do năng lượng tối.

Tính chất

Không thời gian của Vũ trụ thường được thể hiện từ khuôn khổ của không gian Euclid, khi coi không gian có ba chiều vật lý, và thời gian là một chiều khác, trở thành "chiều thứ tư".[45] Bằng cách kết hợp không gian và thời gian thành một thực thể đa tạp toán học duy nhất gọi là không gian Minkowski, các nhà vật lý đã đưa ra nhiều lý thuyết vật lý miêu tả các hiện tượng trong Vũ trụ theo một cách thống nhất hơn từ phạm vi siêu thiên hà cho tới mức hạ nguyên tử.

Các sự kiện trong không thời gian không được xác định tuyệt đối từ khoảng không gian và khoảng thời gian mà có quan hệ tương đối với chuyển động của một quan sát viên. Không gian Minkowski miêu tả gần đúng Vũ trụ khi không có lực hấp dẫn; đa tạp tựa-Riemann của thuyết tương đối rộng miêu tả Vũ trụ chính xác hơn khi đưa trường hấp dẫn và vật chất vào không thời gian bốn chiều. Lý thuyết dây giả thiết có tồn tại những chiều ngoại lai khác của không thời gian.

Trong bốn tương tác cơ bản, lực hấp dẫn thống trị Vũ trụ trên phạm vi kích thước lớn, bao gồm thiên hà và các cấu trúc lớn hơn. Các hiệu ứng hấp dẫn có tính tích lũy; ngược lại, trong khi đó các hiệu ứng của điện tích âm và điện tích dương có xu hướng hủy lẫn nhau, khiến cho lực điện từ không có ảnh hưởng nhiều trên quy mô lớn của Vũ trụ. Hai tương tác còn lại, tương tác yếu và tương tác mạnh, giảm cường độ tác dụng rất nhanh theo khoảng cách và các hiệu ứng của chúng chủ yếu đáng kể trên phạm vi hạ nguyên tử.

Vũ trụ chứa vật chất nhiều hơn phản vật chất, một sự chênh lệch có khả năng liên quan tới sự vi phạm CP trong tương tác yếu.[46] Dường như Vũ trụ cũng không có động lượng hay mômen động lượng. Sự vắng mặt của điện tích hay động lượng trên tổng thể có thể xuất phát từ các định luật vật lý được đa số các nhà khoa học công nhận (tương ứng định luật Gauss và tính không phân kỳ của giả tenxơ ứng suất-năng lượng-động lượng) nếu Vũ trụ có biên giới hạn.[47]

Các cấp độ khoảng cách trong Vũ trụ quan sát được
Vị trí của Trái Đất trong Vũ trụ.

Hình dạng

The three possible options of the shape of the Universe.

Thuyết tương đối tổng quát miêu tả không thời gian bị cong như thế nào do ảnh hưởng của vật chất và năng lượng. Tô pô hay hình học của Vũ trụ bao gồm cả hình học cục bộ trong vũ trụ quan sát đượchình học toàn cục. Các nhà vũ trụ học thường nghiên cứu trên một nhát cắt kiểu không gian nhất định của không thời gian gọi là các tọa độ đồng chuyển động. Phần không thời gian có thể quan sát được là phần nhìn ngược về nón ánh sáng mà phân định ra chân trời vũ trụ học. Chân trời vũ trụ học (cũng gọi là chân trời hạt hoặc chân trời ánh sáng) là khoảng cách đo được mà từ đó có thể khôi phục được thông tin[48] hay khoảng cách lớn nhất mà hạt có thể đạt được để tới quan sát viên trong phạm vi tuổi của Vũ trụ. Chân trời này là ranh giới biên giữa những vùng quan sát được và không quan sát được của Vũ trụ.[49][50] Sự tồn tại, tính chất và ý nghĩa của chân trời Vũ trụ học phụ thuộc vào từng mô hình vũ trụ học cụ thể.

Một tham số quan trọng xác định lên tương lai tiến hóa của Vũ trụ đó là tham số mật độ, Omega (Ω), định nghĩa bằng mật độ vật chất trung bình của Vũ trụ chia cho một giá trị giới hạn của mật độ này. Việc có một trong ba khả năng của hình dạng Vũ trụ phụ thuộc vào Ω có bằng, nhỏ hơn hay lớn hơn 1. Tương ứng với các giá trị này là Vũ trụ phẳng, mở hay Vũ trụ đóng.[51]

Các quan sát, bao gồm từ các tàu Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), và Planck vẽ bản đồ CMB, cho thấy Vũ trụ mở rộng vô hạn với tuổi hữu hạn như được miêu tả bởi mô hình Friedmann–Lemaître–Robertson–Walker (FLRW).[52][53][54][55] Mô hình FLRW cũng ủng hộ các mô hình vũ trụ lạm phát và mô hình chuẩn của vũ trụ học, miêu tả vũ trụ phẳng và đồng nhất với sự chiếm lĩnh chủ yếu của vật chất tốinăng lượng tối.[56][57]

Tô pô toàn cục của Vũ trụ rất khó xác định và người ta chưa biết chính xác tính chất này của Vũ trụ. Từ các dữ liệu quan trắc CMB của tàu Planck, một số nhà vật lý cho rằng tô pô của vũ trụ là mở, lớn vô hạn có biên hoặc không có biên.[58][59]

Kích thước và các khu vực

Xác định kích thước chính xác của Vũ trụ là một vấn đề khó khăn. Theo như định nghĩa có tính giới hạn, Vũ trụ là những thứ trong phạm vi không thời gian mà có thể có cơ hội tương tác với chúng ta và ngược lại.[60] Theo thuyết tương đối tổng quát, một số khu vực của không gian sẽ không bao giờ tương tác được với chúng ta ngay cả trong thời gian tồn tại của Vũ trụ bởi vì tốc độ ánh sáng là giới hạn và sự giãn nở của không gian. Ví dụ, thông điệp vô tuyến gửi từ Trái Đất có thể không tới được một số khu vực của không gian, ngay cả nếu như Vũ trụ tồn tại mãi mãi: do không gian có thể giãn nở nhanh hơn ánh sáng truyền bên trong nó.[61]

Các vùng không gian ở xa được cho là tồn tại và là một phần thực tại như chúng ta, cho dù chúng ta không bao giờ chạm tới được chúng. Vùng không gian mà chúng ta có thể thu nhận được thông tin gọi là Vũ trụ quan sát được. Nó phụ thuộc vào vị trí của người quan sát. Bằng cách di chuyển, một quan sát viên có thể liên lạc được với một vùng không thời gian lớn hơn so với quan sát viên đứng yên. Tuy vậy, ngay cả đối với quan sát viên di chuyển nhanh nhất cũng không thể tương tác được với toàn bộ không gian. Nói chung, Vũ trụ quan sát được lấy theo nghĩa của phần không gian Vũ trụ được quan sát từ điểm thuận lợi của chúng ta từ Ngân Hà.

Khoảng cách riêng—khoảng cách được đo tại một thời điểm cụ thể, bao gồm vị trí hiện tại từ Trái Đất cho tới biên giới của Vũ trụ quan sát được là bằng 46 tỷ năm ánh sáng (14 tỷ parsec), do đó đường kính của Vũ trụ quan sát được vào khoảng 91 tỷ năm ánh sáng (28×10^9 pc). Khoảng cách ánh sáng từ biên của Vũ trụ quan sát được là xấp xỉ bằng tuổi của Vũ trụ nhân với tốc độ ánh sáng, 13,8 tỷ năm ánh sáng (4,2×10^9 pc), nhưng khoảng cách này không biểu diễn cho một thời điểm bất kỳ khác, bởi vì biên giới của Vũ trụ và Trái Đất đang di chuyển dần ra xa khỏi nhau.[62] Để so sánh, đường kính của một thiên hà điển hình gần bằng 30.000 năm ánh sáng, và khoảng cách điển hình giữa hai thiên hà lân cận nhau là khoảng 3 triệu năm ánh sáng.[63] Ví dụ, đường kính của Ngân Hà vào khoảng 100.000 năm ánh sáng,[64] và thiên hà lớn gần nhất với Ngân Hà, thiên hà Andromeda, nằm cách xa khoảng 2,5 triệu năm ánh sáng.[65] Bởi vì chúng ta không thể quan sát không gian vượt ngoài biên giới của Vũ trụ quan sát được, chúng ta không thể biết được kích thước của Vũ trụ là hữu hạn hay vô hạn.[12][66][67]

Tuổi và sự giãn nở

Các nhà thiên văn tính toán tuổi của Vũ trụ bằng giả thiết rằng mô hình Lambda-CDM miêu tả chính xác sự tiến hóa của Vũ trụ từ một trạng thái nguyên thủy rất nóng, đậm đặc và đồng nhất cho tới trạng thái hiện tại và họ thực hiện đo các tham số vũ trụ học mà cấu thành lên mô hình này. Mô hình này được hiểu khá tốt về mặt lý thuyết và được ủng hộ bởi những quan trắc thiên văn với độ chính xác cao gần đây như từ các tàu WMAP và Planck. Các kết quả này thường khớp với các quan trắc từ các dự án khảo sát sự bất đẳng hướng trong bức xạ vi sóng vũ trụ, mối liên hệ giữa dịch chuyển đỏ và độ sáng từ các vụ nổ siêu tân tinh loại Ia, và khảo sát các cụm thiên hà trên phạm vi lớn bao gồm đặc điểm dao động baryon tựa âm thanh (baryon acoustic oscillation). Những quan sát khác, như nghiên cứu hằng số Hubble, sự phân bố các cụm thiên hà, hiện tượng thấu kính hấp dẫn yếu và tuổi của các cụm sao cầu, đều cho dữ liệu nhất quán với nhau, từ đó mang lại phép thử chéo cho mô hình chuẩn của Vũ trụ học ở giai đoạn trẻ của vũ trụ nhưng bớt chính xác hơn đối với những đo đạc trong phạm vi gần Ngân Hà. Với sự ưu tiên về mô hình Lambda-CDM là đúng, sử dụng nhiều kỹ thuật đo cho những tham số này cho phép thu được giá trị xấp xỉ tốt nhất về tuổi của Vũ trụ vào khoảng 13,799 ± 0,021 tỷ năm (tính đến năm 2015).[1]

Theo thời gian Vũ trụ và các thành phần trong nó tiến hóa, ví dụ số lượng và sự phân bố của các chuẩn tinh và các thiên hà đều thay đổi[68] và chính không gian cũng giãn nở. Vì sự giãn nở này, các nhà khoa học có thể ghi lại được ánh sáng từ một thiên hà nằm cách xa Trái Đất 30 tỷ năm ánh sáng cho dù ánh sáng mới chỉ đi được khoảng thời gian khoảng 13 tỷ năm; lý do không gian giữa chúng đã mở rộng ra. Sự giãn nở này phù hợp với quan sát rằng ánh sáng từ những thiên hà ở xa khi tới được thiết bị đo thì đã bị dịch chuyển sáng phía đỏ; các photon phát ra từ chúng đã mất dần năng lượng và chuyển dịch sang bước sóng dài hơn (hay tần số thấp hơn) trong suốt quãng đường hành trình của chúng. Phân tích phổ từ các siêu tân tinh loại Ia cho thấy sự giãn nở không gian là đang gia tốc tăng.[69][70]

Càng nhiều vật chất trong Vũ trụ, lực hút hấp dẫn giữa chúng càng mạnh. Nếu Vũ trụ quá đậm đặc thì nó sẽ sớm co lại thành một kỳ dị hấp dẫn. Tuy nhiên, nếu Vũ trụ chứa quá ít vật chất thì sự giãn nở sẽ gia tốc quá nhanh không đủ thời gian để các hành tinh và hệ hành tinh hình thành. Sau Vụ Nổ Lớn, Vũ trụ giãn nở một cách đơn điệu. Thật ngạc nhiên là, Vũ trụ của chúng ta có mật độ khối lượng vừa đúng vào cỡ khoảng 5 proton trên một mét khối cho phép sự giãn nở của không gian kéo dài trong suốt 13,8 tỷ năm qua, một quãng thời gian đủ để hình thành lên vũ trụ quan sát được như ngày nay.[71]

Có những lực mang tính động lực tác động lên các hạt trong Vũ trụ mà ảnh hưởng tới tốc độ giãn nở. Trước năm 1998, đa số các nhà vũ trụ học cho rằng sự tăng giá trị của hằng số Hubble sẽ tiến tới giảm dần theo thời gian do sự ảnh hưởng của tương tác hấp dẫn, do vậy họ đưa ra một đại lượng đo được trong Vũ trụ đó là tham số giảm tốc mà họ hi vọng nó có liên hệ trực tiếp tới mật độ vật chất của Vũ trụ. Vào năm 1998, hai nhóm các nhà thiên văn độc lập với nhau đã đo được tham số giảm tốc có giá trị xấp xỉ bằng −1 nhưng khác 0, hàm ý rằng tốc độ giãn nở ngày nay của Vũ trụ là gia tăng theo thời gian.[72][16]

Không thời gian

Không thời gian là bối cảnh cho mọi sự kiện vật lý xảy ra—một sự kiện là một điểm trong không thời gian xác định bởi các tọa độ không gian và thời gian. Các yếu tố cơ bản của không thời gian là các sự kiện. Trong một không thời gian bất kỳ, sự kiện được xác định một cách duy nhất bởi vị trí và thời gian. Bởi vì các sự kiện là các điểm không thời gian, trong vật lý tương đối tính cổ điển, vị trí của một hạt cơ bản (giống như hạt điểm) tại một thời điểm cụ thể có thể được viết bằng . Có thể định nghĩa không thời gian là hợp của mọi sự kiện giống như cách một đường thẳng là hợp của mọi điểm trên nó, mà theo phát biểu toán học gọi là đa tạp.[73]

Vũ trụ dường như là một continum không thời gian chứa ba chiều không gian một chiều thời khoảng (thời gian). Trên trung bình, Vũ trụ có tính chất hình học gần phẳng (hay độ cong không gian xấp xỉ bằng 0), có nghĩa là hình học Euclid là mô hình xấp xỉ tốt về hình học của Vũ trụ trên khoảng cách lớn của nó.[74] Ở cấu trúc toàn cục, tô pô của không thời gian có thể là không gian đơn liên (simply connected space), tương tự như với một mặt cầu, ít nhất trên phạm vi Vũ trụ quan sát được. Tuy nhiên, các quan sát hiện tại không thể ngoại trừ một số khả năng rằng Vũ trụ có thêm nhiều chiều ẩn giấu và không thời gian của Vũ trụ có thể là không gian tô pô đa liên toàn cục (multiply connected global topology), tương tự như tô pô của không gian hai chiều đối với mặt của hình trụ hoặc hình vòng xuyến.[53][75][76][77]

Thành phần

Mô phỏng sự hình thành của các đám và sợi thiên hà trên quy mô lớn theo mô hình Vật chất tối lạnh kết hợp với năng lượng tối. Khung hình chỉ ra tiến hóa của cấu trúc này trong hộp thể tích 43 triệu parsec (hay 140 triệu năm ánh sáng) từ dịch chuyển đỏ bằng 30 cho tới kỷ nguyên hiện tại (hộp trên cùng bên trái z=30 tới hộp dưới cùng bên phải z=0).

Vũ trụ chứa phần lớn các thành phần năng lượng tối, vật chất tối, và vật chất thông thường. Các thành phần khác là bức xạ điện từ (ước tính chiếm từ 0,005% đến gần 0,01%) và phản vật chất.[78][79][80] Tổng lượng bức xạ điện từ sản sinh ra trong Vũ trụ đã giảm đi một nửa trong 2 tỷ năm qua.[81][82]

Tỷ lệ phần trăm của mọi loại vật chất và năng lượng thay đổi trong suốt lịch sử của Vũ trụ.[83] Ngày nay, vật chất thông thường, bao gồm nguyên tử, sao, thiên hà, môi trường không gian liên sao, và sự sống, chỉ chiếm khoảng 4,9% thành phần của Vũ trụ.[6] Mật độ tổng hiện tại của loại vật chất thông thường là rất thấp, chỉ khoảng 4,5 × 10−31 gram trên một centimét khối, tương ứng với mật độ của một proton trong thể tích bốn mét khối.[4] Các nhà khoa học vẫn chưa biết được bản chất của cả năng lượng tối và vật chất tối. Vật chất tối, một dạng vật chất bí ẩn mà các nhà vật lý vẫn chưa nhận ra dạng của nó, chiếm thành phần khoảng 26,8%. Năng lượng tối, có thể coi là năng lượng của chân không và là nguyên nhân gây ra sự giãn nở gia tốc của Vũ trụ trong lịch sử gần đây của nó, thành phần còn lại chiếm khoảng 68,3%.[6][84][85]

Bản đồ vẽ các siêu đám thiên hà và khoảng trống gần Trái Đất nhất.

Vật chất, vật chất tối, năng lượng tối phân bố đồng đều trong toàn thể Vũ trụ khi xét phạm vi khoảng cách trên 300 triệu năm ánh sáng.[86] Tuy nhiên, trên những phạm vi nhỏ hơn, vật chất có xu hướng tập trung lại thành cụm; nhiều nguyên tử tích tụ thành các ngôi sao, các ngôi sao tập trung trong thiên hà và phần lớn các thiên hà quần tụ lại thành các đám, siêu đám và cuối cùng là những sợi thiên hà (galaxy filament) trên những khoảng cách lớn nhất. Vũ trụ quan sát được chứa xấp xỉ 3×1023 ngôi sao[87] và hơn 100 tỷ (1011) thiên hà.[88] Các thiên hà điển hình xếp từ loại thiên hà lùn với vài chục triệu [89] (107) sao cho tới những thiên hà chứa khoảng một nghìn tỷ (1012)[90] sao. Giữa những cấu trúc này là các khoảng trống (void) lớn, với đường kính vào cỡ 10–150 Mpc (33 triệu–490 triệu ly). Ngân Hà nằm trong Nhóm Địa Phương, rồi đến lượt nó thuộc về siêu đám Laniakea.[91] Siêu đám này trải rộng trên 500 triệu năm ánh sáng, trong khi Nhóm Địa Phương có đường kính xấp xỉ 10 triệu năm ánh sáng.[92] Vũ trụ cũng có những vùng trống hoang vu tương đối lớn; khoảng trống lớn nhất từng đo được có đường kính vào khoảng 1,8 tỷ ly (550 Mpc).[93]

Tỷ lệ phần trăm các thành phần của Vũ trụ ngày nay so với thời điểm 380.000 năm sau Vụ Nổ Lớn, dữ liệu thu thập trong 5 năm từ tàu WMAP (tính đến 2008).[94] (Do làm tròn, tổng các tỷ lệ này không chính xác bằng 100%). Điều này phản ánh giới hạn của WMAP khi xác định vật chất tối và năng lượng tối.

Trên quy mô lớn hơn các siêu đám thiên hà, Vũ trụ quan sát được là đẳng hướng, có nghĩa rằng những dữ liệu mang tính chất thống kê của Vũ trụ có giá trị như nhau trong mọi hướng khi quan sát từ Trái Đất. Vũ trụ chứa đầy bức xạ vi sóng có độ đồng đều cao mà nó tương ứng với phổ bức xạ vật đen trong trạng thái cân bằng nhiệt động ở nhiệt độ gần 2,72548 kelvin.[5] Tiên đề coi Vũ trụ là đồng đều và đẳng hướng trên phạm vi khoảng cách lớn được gọi là nguyên lý vũ trụ học.[95] Nếu vật chất và năng lượng trong Vũ trụ phân bố đồng đều và đẳng hướng thì sẽ nhìn thấy mọi thứ như nhau khi quan sát từ mọi điểm[96] và Vũ trụ không có một tâm đặc biệt nào.[97]

Năng lượng tối

Tại sao sự giãn nở của Vũ trụ lại tăng tốc vẫn là một câu hỏi hóc búa đối với các nhà vũ trụ học. Người ta thường cho rằng "năng lượng tối", một dạng năng lượng bí ẩn với giả thuyết mật độ không đổi và có mặt khắp nơi trong Vũ trụ là nguyên nhân của sự giãn nở này.[98] Theo nguyên lý tương đương khối lượng-năng lượng, trong phạm vi cỡ thiên hà, mật độ của năng lượng tối (~ 7 × 10−30 g/cm3) nhỏ hơn rất nhiều so với mật độ của vật chất thông thường hay của năng lượng tối chứa trong thể tích của một thiên hà điển hình. Tuy nhiên, trong thời kỳ năng lượng tối thống trị hiện nay, nó lấn át thành phần khối lượng-năng lượng của Vũ trụ bởi vì sự phân bố đồng đều của nó ở khắp nơi trong không gian.[99][100]

Các nhà khoa học đã đề xuất hai dạng mà năng lượng tối có thể gán cho đó là hằng số vũ trụ học, một mật độ năng lượng không đổi choán đầy không gian vũ trụ,[101]các trường vô hướng như nguyên tố thứ năm (quintessence) hoặc trường moduli, các đại lượng động lực mà mật độ năng lượng có thể thay đổi theo không gian và thời gian. Các đóng góp từ những trường vô hướng mà không đổi trong không gian cũng thường được bao gồm trong hằng số vũ trụ học. Ngoài ra, biến đổi nhỏ ở giá trị trường vô hướng bởi sự phân bố bất đồng nhất theo không gian khiến cho rất khó có thể phân biệt những trường này với mô hình hằng số vũ trụ. Vật lý lượng tử cũng gợi ý hằng số này có thể có nguồn gốc từ năng lượng chân không (ví dụ sự xuất hiện của hiệu ứng Casimir). Tuy vậy giá trị đo được cuả mật độ năng lượng tối lại nhỏ hơn 120 lần bậc độ lớn so với giá trị tính toán của lý thuyết trường lượng tử.

Phản vũ trụ

Phản vũ trụ (phản thế giới) là giả thiết về một vũ trụ cấu thành bởi các thành phần phản vật chất, có thể tuân theo những nguyên tắc vật lý khác với các nguyên tắc vật lý chúng ta hiện có. Phản vũ trụ là một không gian được cấu thành từ các thành phần phản vật chất. Nó không có những tính chất vật lý như chúng ta đã biết. Tính chất của phản vũ trụ hoàn toàn trái ngược với vũ trụ của chúng ta. Nó tồn tại song song với vũ trụ của chúng ta nhưng cách xa. Nó được hình thành cùng với vụ nổ lớn. Trường hợp khi phản vũ trụ trên gần với vũ trụ chúng ta thì sẽ tạo nên một không gian mới đó là không gian phi vật chất, khi đó vũ trụ chúng ta sẽ biến mất.

Xem thêm

Tham khảo

  1. ^ a b c Planck Collaboration (2015). “Planck 2015 results. XIII. Cosmological parameters (See Table 4 on page 31 of pfd)”. arXiv:1502.01589. Chú thích journal cần |journal= (trợ giúp)
  2. ^ a b Itzhak Bars; John Terning (2009). Extra Dimensions in Space and Time. Springer. tr. 27ff. ISBN 978-0-387-77637-8. Truy cập ngày 1 tháng 5 năm 2011.
  3. ^ Paul Davies (2006). The Goldilocks Enigma. First Mariner Books. tr. 43ff. ISBN 978-0-618-59226-5. Truy cập ngày 1 tháng 7 năm 2013.
  4. ^ a b NASA/WMAP Science Team (24 tháng 1 năm 2014). “Universe 101: What is the Universe Made Of?”. NASA. Truy cập ngày 17 tháng 2 năm 2015.
  5. ^ a b Fixsen, D. J. (2009). “The Temperature of the Cosmic Microwave Background”. The Astrophysical Journal. 707 (2): 916–920. arXiv:0911.1955. Bibcode:2009ApJ...707..916F. doi:10.1088/0004-637X/707/2/916.
  6. ^ a b c “First Planck results: the Universe is still weird and interesting”. Matthew Francis. Ars technica. 21 tháng 3 năm 2013. Truy cập ngày 21 tháng 8 năm 2015.
  7. ^ NASA/WMAP Science Team (24 tháng 1 năm 2014). “Universe 101: Will the Universe expand forever?”. NASA. Truy cập ngày 16 tháng 4 năm 2015.
  8. ^ Universe. Webster's New World College Dictionary, Wiley Publishing, Inc. 2010.
  9. ^ “Universe”. Dictionary.com. Truy cập ngày 21 tháng 9 năm 2012.
  10. ^ “Universe”. Merriam-Webster Dictionary. Truy cập ngày 21 tháng 9 năm 2012.
  11. ^ Zeilik, Michael; Gregory, Stephen A. (1998). Introductory Astronomy & Astrophysics (ấn bản 4). Saunders College Publishing. ISBN 0030062284. The totality of all space and time; all that is, has been, and will be.
  12. ^ a b Brian Greene (2011). The Hidden Reality. Alfred A. Knopf.
  13. ^ Dold-Samplonius, Yvonne (2002). From China to Paris: 2000 Years Transmission of Mathematical Ideas. Franz Steiner Verlag.
  14. ^ Thomas F. Glick; Steven Livesey; Faith Wallis. Medieval Science Technology and Medicine: An Encyclopedia. Routledge.
  15. ^ Hawking, Stephen (1988). A Brief History of Time. Bantam Books. tr. 125. ISBN 0-553-05340-X.
  16. ^ a b “The Nobel Prize in Physics 2011”. Truy cập ngày 16 tháng 4 năm 2015.
  17. ^ Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên EllisKS032
  18. ^ Palmer, Jason. (2011-08-03) BBC News – 'Multiverse' theory suggested by microwave background. Retrieved 2011-11-28.
  19. ^ Paul Copan; William Lane Craig (2004). Creation Out of Nothing: A Biblical, Philosophical, and Scientific Exploration. Baker Academic. tr. 220. ISBN 9780801027338.
  20. ^ Alexander Bolonkin (tháng 11 năm 2011). Universe, Human Immortality and Future Human Evaluation. Elsevier. tr. 3–. ISBN 978-0-12-415801-6.
  21. ^ Duco A. Schreuder (3 tháng 12 năm 2014). Vision and Visual Perception. Archway Publishing. tr. 135–. ISBN 978-1-4808-1294-9.
  22. ^ Tegmark, Max. “The Mathematical Universe”. Foundations of Physics. 38 (2): 101–150. arXiv:0704.0646. Bibcode:2008FoPh...38..101T. doi:10.1007/s10701-007-9186-9. a short version of which is available at Shut up and calculate. (in reference to David Mermin's famous quote "shut up and calculate" [1]
  23. ^ Jim Holt (2012). Why Does the World Exist?. Liveright Publishing. tr. 308.
  24. ^ Timothy Ferris (1997). The Whole Shebang: A State-of-the-Universe(s) Report. Simon & Schuster. tr. 400.
  25. ^ The Compact Edition of the Oxford English Dictionary, volume II, Oxford: Oxford University Press, 1971, p. 3518.
  26. ^ Lewis, C. T. and Short, S (1879) A Latin Dictionary, Oxford University Press, ISBN 0-19-864201-6, pp. 1933, 1977–1978.
  27. ^ Liddell; Scott. “A Greek-English Lexicon”. πᾶς
  28. ^ Liddell; Scott. “A Greek-English Lexicon”. ὅλος
  29. ^ Liddell; Scott. “A Greek–English Lexicon”. κόσμος
  30. ^ Lewis, C. T.; Short, S (1879). A Latin Dictionary. Oxford University Press. tr. 1881–1882, 1175, 1189–1190. ISBN 0-19-864201-6.
  31. ^ The Compact Edition of the Oxford English Dictionary. II. Oxford: Oxford University Press. 1971. tr. 909, 569, 3821–3822, 1900. ISBN 978-0198611172.
  32. ^ Joseph Silk (2009). Horizons of Cosmology. Templeton Pressr. tr. 208.
  33. ^ Simon Singh (2005). Big Bang: The Origin of the Universe. Harper Perennial. tr. 560.
  34. ^ C. Sivaram (1986). “Evolution of the Universe through the Planck epoch”. Astrophysics & Space Science. 125: 189. Bibcode:1986Ap&SS.125..189S. doi:10.1007/BF00643984.
  35. ^ “The Standard Cosmology”. Jeff Filippini. Berkeley Cosmology Group. 2005. Truy cập ngày 15 tháng 12 năm 2015.
  36. ^ Steven Weinberg, The first three minutes, Basic Books, 1993, tr 107
  37. ^ Weiss, Achim. “Big Bang Nucleosynthesis: Cooking up the first light elements”. Einstein Online. Truy cập ngày 15 tháng 12 năm 2015.
  38. ^ Edward Wright (2012). “Big Bang Nucleonsynthesis”. Astronomy department, UCLA. Truy cập ngày 17 tháng 12 năm 2015.
  39. ^ J. Beringer et al. (Particle Data Group), "Big-Bang cosmology" Phys. Rev. D86, 010001 (2012): (21.43)
  40. ^ “Overview of BBN”. White, Martin. Berkeley Astronomy department, University of California. Truy cập ngày 15 tháng 12 năm 2015.
  41. ^ “History of cosmic structure formation”. ESA. Truy cập ngày 15 tháng 12 năm 2015.
  42. ^ Ryden, Barbara, "Introduction to Cosmology", 2006, phương trình 6.41
  43. ^ Richard B. Larson and Volker Bromm (tháng 3 năm 2002). “The First Stars in the Universe”. Scientific American.
  44. ^ Ryden, Barbara, "Introduction to Cosmology", 2006, phương trình 6.33
  45. ^ Brill, Dieter; Jacobsen, Ted (2006). “Spacetime and Euclidean geometry”. General Relativity and Gravitation. 38: 643. arXiv:gr-qc/0407022. Bibcode:2006GReGr..38..643B. doi:10.1007/s10714-006-0254-9.
  46. ^ “Antimatter”. Particle Physics and Astronomy Research Council. 28 tháng 10 năm 2003. Truy cập ngày 10 tháng 8 năm 2006.
  47. ^ Landau & Lifshitz (1975, tr. 361): "It is interesting to note that in a closed space the total electric charge must be zero. Namely, every closed surface in a finite space encloses on each side of itself a finite region of space. Therefore the flux of the electric field through this surface is equal, on th eone hand, to the total charge located in the interior of the surface, and on the other hand to the total charge outside of it, with opposite sign. Consequently, the sum of the charges on the two sides of the surface is zero."
  48. ^ Margalef-Bentabol, Berta; Margalef-Bentabol, Juan; Cepa, Jordi (8 tháng 2 năm 2013). “Evolution of the cosmological horizons in a universe with countably infinitely many state equations”. Journal of Cosmology and Astroparticle Physics. 015. 2013 (02). arXiv:1302.2186. Bibcode:2013JCAP...02..015M. doi:10.1088/1475-7516/2013/02/015.
  49. ^ Edward Robert Harrison (2000). Cosmology: the science of the universe. Cambridge University Press. tr. 447–. ISBN 978-0-521-66148-5. Truy cập ngày 1 tháng 5 năm 2011.
  50. ^ Andrew R. Liddle; David Hilary Lyth (13 tháng 4 năm 2000). Cosmological inflation and large-scale structure. Cambridge University Press. tr. 24–. ISBN 978-0-521-57598-0. Truy cập ngày 1 tháng 5 năm 2011.
  51. ^ “What is the Ultimate Fate of the Universe?”. National Aeronautics and Space Administration. NASA. Truy cập ngày 23 tháng 8 năm 2015.
  52. ^ a b Luminet, Jean-Pierre; Weeks, Jeffrey R.; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe (9 tháng 10 năm 2003). “Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background”. Nature. 425 (6958): 593–5. arXiv:astro-ph/0310253. Bibcode:2003Natur.425..593L. doi:10.1038/nature01944. PMID 14534579.
  53. ^ Roukema, Boudewijn; Zbigniew Buliński; Agnieszka Szaniewska; Nicolas E. Gaudin (2008). “A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data”. Astronomy and Astrophysics. 482 (3): 747. arXiv:0801.0006. Bibcode:2008A&A...482..747L. doi:10.1051/0004-6361:20078777.
  54. ^ Aurich, Ralf; Lustig, S.; Steiner, F.; Then, H. (2004). “Hyperbolic Universes with a Horned Topology and the CMB Anisotropy”. Classical and Quantum Gravity. 21 (21): 4901–4926. arXiv:astro-ph/0403597. Bibcode:2004CQGra..21.4901A. doi:10.1088/0264-9381/21/21/010.
  55. ^ Planck collaboration (2014). “Planck 2013 results. XVI. Cosmological parameters”. Astronomy & Astrophysics. arXiv:1303.5076. Bibcode:2014A&A...571A..16P. doi:10.1051/0004-6361/201321591.
  56. ^ “Planck reveals 'almost perfect' universe”. Michael Banks. Physics World. 21 tháng 3 năm 2013. Truy cập ngày 21 tháng 3 năm 2013.
  57. ^ Andrew R. Liddle and Marina Cortês (2013). “Cosmic Microwave Background Anomalies in an Open Universe”. Phys. Rev. Lett. 111 (111302). arXiv:1306.5698. doi:10.1103/PhysRevLett.111.111302.
  58. ^ Marcus Yoo (2011). “Unexpected Connections” (PDF). Engineering and Science. Caltech. 74:1: 30. ISSN 0013-7812.
  59. ^ McCall, Storrs. A Model of the Universe: Space-time, Probability, and Decision. Oxford University. tr. 23.
  60. ^ Michio Kaku (11 tháng 3 năm 2008). Physics of the Impossible: A Scientific Exploration into the World of Phasers, Force Fields, Teleportation, and Time Travel. Knopf Doubleday Publishing Group. tr. 202–. ISBN 978-0-385-52544-2.
  61. ^ Christopher Crockett (20 tháng 2 năm 2013). “What is a light-year?”. EarthSky.
  62. ^ Rindler, p. 196.
  63. ^ Christian, Eric; Samar, Safi-Harb. “How large is the Milky Way?”. Truy cập ngày 28 tháng 11 năm 2007.
  64. ^ I. Ribas; và đồng nghiệp (2005). “First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy”. Astrophysical Journal. 635 (1): L37–L40. arXiv:astro-ph/0511045. Bibcode:2005ApJ...635L..37R. doi:10.1086/499161. “Và đồng nghiệp” được ghi trong: |author= (trợ giúp)
    McConnachie, A. W.; và đồng nghiệp (2005). “Distances and metallicities for 17 Local Group galaxies”. Monthly Notices of the Royal Astronomical Society. 356 (4): 979–997. arXiv:astro-ph/0410489. Bibcode:2005MNRAS.356..979M. doi:10.1111/j.1365-2966.2004.08514.x. “Và đồng nghiệp” được ghi trong: |author= (trợ giúp)
  65. ^ “How can space travel faster than the speed of light?”. Vannesa Janek. Universe Today. 20 tháng 2 năm 2015. Truy cập ngày 6 tháng 6 năm 2015.
  66. ^ “Is faster-than-light travel or communication possible? Section: Expansion of the Universe”. Philip Gibbs. 1997. Truy cập ngày 6 tháng 6 năm 2015.
  67. ^ Phil Berardelli (25 tháng 3 năm 2010). “Galaxy Collisions Give Birth to Quasars”. Science News.
  68. ^ Riess, Adam G.; và đồng nghiệp (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant”. Astronomical J. 116 (3): 1009–38. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. “Và đồng nghiệp” được ghi trong: |author= (trợ giúp)
  69. ^ Perlmutter, S.; và đồng nghiệp (1999). “Measurements of Omega and Lambda from 42 high redshift supernovae”. Astrophysical Journal. 517 (2): 565–86. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221. “Và đồng nghiệp” được ghi trong: |author= (trợ giúp)
  70. ^ Sean Carroll and Michio Kaku (2014). How the Universe Works 3. End of the Universe. Discovery Channel.
  71. ^ Overbye, Dennis (11 tháng 10 năm 2003). “A 'Cosmic Jerk' That Reversed the Universe”. New York Times.
  72. ^ Schutz, Bernard (31 tháng 5 năm 2009). A First Course in General Relativity (ấn bản 2). Cambridge University Press. tr. 142 & 171. ISBN 0-521-88705-4.
  73. ^ WMAP Mission: Results – Age of the Universe. Map.gsfc.nasa.gov. Truy cập 2011-11-28.
  74. ^ Luminet, Jean-Pierre; Boudewijn F. Roukema (1999). Topology of the Universe: Theory and Observations. arXiv:astro-ph/9901364. Đã bỏ qua tham số không rõ |booktitle= (trợ giúp)
  75. ^ Janna Levin, Evan Scannapieco and Joseph Silk (1998). “The topology of the universe: the biggest manifold of them all”. Classical and Quantum Gravity. 15 (9). arXiv:gr-qc/9803026. doi:10.1088/0264-9381/15/9/015.
  76. ^ Lachièze-Rey, M., Luminet, J.P. (1995). “Cosmic Topology”. Physics Reports. 254 (3): 135-214. arXiv:gr-qc/9605010. doi:10.1016/0370-1573(94)00085-H.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  77. ^ Fritzsche, Hellmut. “electromagnetic radiation | physics”. Encyclopedia Britannica. tr. 1. Truy cập ngày 26 tháng 7 năm 2015.
  78. ^ “Physics 7:Relativity, SpaceTime and Cosmology” (PDF). Physics 7:Relativity, SpaceTime and Cosmology. University of California Riverside. Truy cập ngày 26 tháng 7 năm 2015.
  79. ^ “Physics - for the 21st Century”. www.learner.org. Harvard-Smithsonian Center for Astrophysics Annenberg Learner. Truy cập ngày 27 tháng 7 năm 2015.
  80. ^ Redd,SPACE.com, Nola Taylor. “It's Official: The Universe Is Dying Slowly”. Truy cập ngày 11 tháng 8 năm 2015.
  81. ^ “RIP Universe - Your Time Is Coming… Slowly | Video”. Will Parr, et al. Space.com. Truy cập ngày 20 tháng 8 năm 2015.
  82. ^ “Dark matter - A history shapes by dark force”. Timothy Ferris. National Geographic. 2015. Truy cập ngày 30 tháng 12 năm 2015.
  83. ^ Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên DarkMatter
  84. ^ Peebles, P. J. E.; Ratra, Bharat (2003). “The cosmological constant and dark energy”. Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559. Đã bỏ qua tham số không rõ |last-author-amp= (gợi ý |name-list-style=) (trợ giúp)
  85. ^ Mandolesi, N.; và đồng nghiệp (1986). “Large-scale homogeneity of the Universe measured by the microwave background”. Nature. 319 (6056): 751–753. doi:10.1038/319751a0. “Và đồng nghiệp” được ghi trong: |last1= (trợ giúp)
  86. ^ “The Structure of the Universe”.
  87. ^ Mackie, Glen (1 tháng 2 năm 2002). “To see the Universe in a Grain of Taranaki Sand”. Swinburne University. Truy cập ngày 20 tháng 12 năm 2006.
  88. ^ “Unveiling the Secret of a Virgo Dwarf Galaxy”. ESO. 3 tháng 5 năm 2000. Truy cập ngày 3 tháng 1 năm 2007.
  89. ^ “Hubble's Largest Galaxy Portrait Offers a New High-Definition View”. NASA. 28 tháng 2 năm 2006. Truy cập ngày 3 tháng 1 năm 2007.
  90. ^ “Earth's new address: 'Solar System, Milky Way, Laniakea'. Elizabeth Gibney. Nature. 3 tháng 9 năm 2014. Truy cập ngày 21 tháng 8 năm 2015.
  91. ^ “Local Group”. Fraser Cain. Universe Today. 4 tháng 5 năm 2009. Truy cập ngày 21 tháng 8 năm 2015.
  92. ^ “Astronomers discover largest known structure in the universe is ... a big hole”. The Guardian. 20 tháng 4 năm 2015.
  93. ^ “Content of the Universe - WMAP 9yr Pie Chart”. wmap.gsfc.nasa.gov. Truy cập ngày 26 tháng 7 năm 2015.
  94. ^ Rindler (1977), tr. 202.
  95. ^ Andrew Liddle (2003). An Introduction to Modern Cosmology (2nd ed.). John Wiley & Sons. ISBN 978-0-470-84835-7.. p. 2.
  96. ^ Livio, Mario (2001). The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos. John Wiley and Sons. tr. 53. Truy cập ngày 31 tháng 3 năm 2012.
  97. ^ Peebles, P. J. E. and Ratra, Bharat (2003). “The cosmological constant and dark energy”. Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  98. ^ Paul J. Steinhardt, Neil Turok (2006). “Why the cosmological constant is small and positive”. Science. 312 (5777): 1180-1183. arXiv:astro-ph/0605173. doi:10.1126/science.1126231.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  99. ^ “Dark Energy”. Hyperphysics. Truy cập ngày 4 tháng 1 năm 2014.
  100. ^ Sean M. Carroll (2001). “The cosmological constant”. Living Reviews in Relativity. 4. Truy cập ngày 28 tháng 9 năm 2006.

Đọc thêm

Liên kết ngoài