Khác biệt giữa bản sửa đổi của “Sự hình thành và tiến hóa của Hệ Mặt Trời”

Bách khoa toàn thư mở Wikipedia
Nội dung được xóa Nội dung được thêm vào
Dòng 59: Dòng 59:


===Vành đai tiểu hành tinh===
===Vành đai tiểu hành tinh===
Rìa ngoài của vùng hành tinh đá, trong khoảng từ 2 tới 4 AU, tới Mặt Trời, được gọi là [[vành đai tiểu hành tinh]]. Vành đai này ban đầu chứa đủ vật chất để hình thành 2-3 hành tinh cỡ Trái Đất, và thực sự có rất nhiều [[vi thể hành tinh]] hình thành ở đây. Cũng như ở phía trong, các vi thể hành tinh này kết tụ thành cỡ 20–30 hành tinh phôi thai có kích thước từ cỡ Mặt Trăng tới Sao Hỏa;<ref name=Bottke2005>{{cite journal|author=William F. Bottke, Daniel D. Durda, David Nesvorny et al. | title=Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion | journal=Icarus | volume=179|issue=1 | pages=63–94|year=2005 | doi=10.1016/j.icarus.2005.05.017 | url = http://www.boulder.swri.edu/~bottke/Reprints/Bottke_Icarus_2005_179_63-94_Linking_Collision_Dynamics_MB.pdf|format=PDF | bibcode=2005Icar..179...63B }}</ref> tuy nhiên, do ở gần Sao Mộc cho nên sau khi hành tinh khổng lồ này hình thành, tức khoảng 3 triệu năm sau khi Mặt Trời xuất hiện, khu vực này chịu tác động mạnh mẽ.<ref name=Petit2001>{{cite journal|author=Jean-Marc Petit, Alessandro Morbidelli|title=The Primordial Excitation and Clearing of the Asteroid Belt|journal=Icarus|volume=153|issue=2| pages=338–347|year=2001|doi=10.1006/icar.2001.6702 | url = http://www.gps.caltech.edu/classes/ge133/reading/asteroids.pdf|format=PDF|bibcode=2001Icar..153..338P }}</ref> [[Cộng hưởng quỹ đạo]] với Sao Mộc và Sao Thổ đặc biệt mạnh ở vành đai tiêu hành tinh, và tương tác hấp dẫn với những phôi thai nặng hơn đã phân tán rất nhiều vi thể hành tinh vào các miền cộng hưởng này. Lực hấp dẫn của Sao Mộc làm tăng vận tốc các vật thể trong miền cộng hưởng, khiến chúng vỡ vụn ra sau các va chạm thay vì dính vào và hợp nhất.<ref>{{cite journal | author=R. Edgar, P. Artymowicz | title=Pumping of a Planetesimal Disc by a Rapidly Migrating Planet | journal=[[Monthly Notices of the Royal Astronomical Society]] | year=2004 | volume=354 | issue=3 | pages=769–772 | url = http://www.utsc.utoronto.ca/~pawel/edgar+artymowicz.pdf | format=PDF | accessdate=2008-05-12 | doi = 10.1111/j.1365-2966.2004.08238.x | bibcode=2004MNRAS.354..769E|arxiv = astro-ph/0409017 }}</ref>

Khi Sao Mộc dịch chuyển vào phía trong sau khi hình thành, sự công hưởng quét qua vành đai tiểu hành tinh, kích thích các vật thể trong vùng này gia tăng vận tộc tương đối với nhau.<ref>{{cite conference | author=E. R. D. Scott | title=Constraints on Jupiter's Age and Formation Mechanism and the Nebula Lifetime from Chondrites and Asteroids | booktitle = Proceedings 37th Annual Lunar and Planetary Science Conference | publisher = Lunar and Planetary Society | year=2006 | location = League City, Texas | bibcode =2006LPI....37.2367S }}</ref> Tác động kết hợp của cộng hưởng và các hành tinh phôi thai hoặc phân tán các vi thể hành tinh ra khỏi đĩa hoặc tăng cường [[độ nghiêng quỹ đạo]] và độ lệch tâm quỹ đạo của chúng.<ref name=Bottke2005/><ref name=OBrien2007/> Chính một số phôi thai hành tinh lớn bị Sao Mộc đẩy ra, trong khi số khác có thể đã dịch chuyển vào phía trong hệ và đóng mội vai trò trong giai đoạn kết tụ cuối cùng của các hành tinh đất đá.<ref name=Bottke2005/><ref name=Raymond2007/><ref>{{cite web| author= Susan Watanabe| date=20 July 2001 | url = http://www.jpl.nasa.gov/news/features.cfm?feature=520| title =Mysteries of the Solar Nebula| publisher = NASA| accessdate = 2007-04-02 }}</ref> Trong giai đoạn tiêu biến này, vành đai tiểu hành tinh mất đi hầu hết khối lượng ban đầu của nó, chỉ còn chừng dưới 1% M<sub>⊕</sub>, chủ yếu chứa các vi thể hành tinh nhỏ.<ref name=OBrien2007>{{cite journal|author= David O'Brien, Alessandro Morbidelli, William F. Bottke|title=The primordial excitation and clearing of the asteroid belt—Revisited |journal=Icarus|volume=191|issue= 2| pages=434–452 |year=2007|doi= 10.1016/j.icarus.2007.05.005|format=PDF | url = http://www.boulder.swri.edu/~bottke/Reprints/OBrien_2007_Icarus_191_434_Primordial_Excitation_Clearing_Asteroid_Belt.pdf|bibcode=2007Icar..191..434O }}</ref> Một giai đoạn tiêu biến thứ hai đã xảy ra sau khi Sao Mộc và Sao Thổ bước vào một giai đoạn cộng hưởng quỹ đạo 2:1 tạm thời, khiến chúng giảm khối lượng 10–20 lần, chỉ còn khoảng 1/2,000 khối lượng Trái Đất như ngày nay.<ref name=Krasinsky2002>{{cite journal |author=[[Georgij A. Krasinsky]], [[Elena V. Pitjeva]], M. V. Vasilyev, E. I. Yagudina | bibcode=2002Icar..158...98K |title=Hidden Mass in the Asteroid Belt |journal=Icarus |volume=158 |issue=1 |pages=98–105 |date=July 2002 |doi=10.1006/icar.2002.6837 }}</ref>

Thời kỳ các vụ va chạm lớn ở miền trong Hệ Mặt Trời có thể đã đóng một vai trò hình thành nên lượng nước ngày nay trên Trái Đất (~6{{e|21}}&nbsp;kg) từ các vành đai tiểu hành tinh sơ khai. Nước quá dễ bay hơi để có mặt vào lúc hình thành Trái Đất và hẳn phải tới hành tinh này từ các miền lạnh hơn, xa hơn của Hệ Mặt Trời.<ref name=Hsieh2006 /> Nước có lẽ đã đến từ những phôi thai hành tinh và các vi thể hành tinh bị Sao Mộc ném văng ra khỏi vành đai tiểu hành tinh.<ref name=Raymond2007>{{cite journal | author=Sean N. Raymond, Thomas Quinn, Jonathan I. Lunine |title=High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability | journal=Astrobiology | volume=7 | pages=66–84 | year=2007 | doi=10.1089/ast.2006.06-0126 | bibcode=2007AsBio...7...66R | pmid=17407404 | issue=1|arxiv = astro-ph/0510285 }}</ref> Năm 2006 người ta phát hiện một quần thể các [[sao chổi vành đai chính]], đây cũng có thể là một nguồn gốc khác của nước trên Trái Đất.<ref name=Hsieh2006>{{cite journal|title=A Population of Comets in the Main Asteroid Belt|author=Henry H. Hsieh, [[David Jewitt]] | journal=Science|date=23 March 2006 | volume=312|pages=561–563 | doi=10.1126/science.1125150 | url = http://www.sciencemag.org/cgi/content/abstract/312/5773/561|accessdate=2008-04-05|pmid=16556801|issue=5773|bibcode = 2006Sci...312..561H }}</ref><ref>{{cite web|title=New comet class in Earth's backyard|url = http://www.astronomy.com/asy/default.aspx?c=a&id=4100| work=astronomy.com|author=Francis Reddy|year=2006|accessdate=2008-04-29 }}</ref> Trong khi đó, các sao chổi từ vành đai Kuiber hoặc các vùng xa hơn nhiều nhất chỉ có thể đem lại 6% lượng nước cho Trái Đất.<ref name="Gomes" /><ref>{{cite journal | author= A. Morbidelli, J. Chambers, J. I. Lunine, J. M. Petit, F. Robert, G. B. Valsecchi, K. E. Cyr | title= Source regions and timescales for the delivery of water to the Earth | journal= Meteoritics & Planetary Science | volume=35 | pages=1309 | issn= 1086–9379 | year=2000 |bibcode = 2000M&PS...35.1309M |doi = 10.1111/j.1945-5100.2000.tb01518.x | issue= 6 }}</ref> Giả thuyết [[panspermia]] cho rằng bản thân sự sống có lẽ đã tới Trái Đất theo cách này, tuy nhiên ít người tán thành nó.<ref>{{cite journal|title=From Panspermia to Bioastronomy, the Evolution of the Hypothesis of Universal Life|author=Florence Raulin-Cerceau, Marie-Christine Maurel, Jean Schneider|publisher=Springer Netherlands|journal=Origins of Life and Evolution of Biospheres|year=1998|volume=28|issue=4/6|doi=10.1023/A:1006566518046 | pages=597–612|url = http://www.springerlink.com/content/m1t14rtr7372tp22/|accessdate=2007-12-19 }}</ref>

===Dịch chuyển hành tinh===
===Dịch chuyển hành tinh===
===Các đợt bắn phá sau này===
===Các đợt bắn phá sau này===

Phiên bản lúc 10:46, ngày 6 tháng 7 năm 2014

Hình ảnh mô phỏng của một đám mây bụi tiền hành tinh

Lịch sử Hệ Mặt Trời bắt đầu từ cách đây khoảng 4.6 tỷ năm với sự suy sụp hấp dẫn của một phần một đám mây phân tử khổng lồ.[1] Hầu hết khối lượng suy sụp tập trung trong tâm, tạo nên Mặt Trời, trong khi phần còn lại phẳng ra hình thành một đám mây bụi tiền hành tinh tiến hóa dần thành các hành tinh, mặt trăng, tiểu hành tinh và các tiểu thiên thể khác trong Hệ Mặt Trời.

Mô hình được chấp nhận rộng rãi này, được gọi là giả thuyết tinh vân do Emanuel Swedenborg, Immanuel KantPierre-Simon Laplace đề ra từ thế kỉ 18. Lý thuyết về sự hình thành Hệ Mặt Trời đã phát triển liên tục nhờ kết quả của tiến bộ trong nhiều lĩnh vực khác nhau bao gồm thiên văn học, vật lý học, địa chất họckhoa học hành tinh. Từ buổi bình minh của kỷ nguyên không gian, mô hình đã hiệu chỉnh nhiều lần để đáp ứng những phát hiện mới.

Hệ Mặt Trời đã tiến hóa đáng kể từ dạng ban đầu của nó. Nhiều mặt trăng được hình thành từ các đĩa khí và bụi quay xung quanh các hành tinh, trong khi một số khác sinh ra độc lập nhưng về sau bị bắt vào quỹ đạo của hành tinh. Một số khác nữa, như Mặt Trăng của Trái Đất, có thể là kết quả của những vụ va chạm khổng lồ. Va chạm thiên thể xảy ra thường xuyên cho tới tận ngày nay và đóng vai trò trung tâm trong sự tiến hóa của Hệ Mặt Trời. Vị trí các hành tinh thường xuyên thay đổi và hiện tượng dịch chuyển hành tinh này được cho là thiết yếu trong sự tiến hóa giai đoạn đầu của Hệ Mặt Trời.

Trong khoảng 5 tỷ năm tới, Mặt Trời sẽ nguội dần và nở ra nhiều lần kích thước hiện tại (trở thành một sao khổng lồ đỏ, trước khi lớp ngoài của nó tan ra trở thành một tinh vân hành tinh và để lại một tàn tích sao tức sao lùn trắng. Trong tương lai xa, hấp dẫn từ các ngôi sao chạy qua sẽ từ từ tước mất các hành tinh của Mặt Trời. Một số sẽ bị hủy diệt, số khác sẽ tách ra đi vào không gian liên sao. Cuối cùng, trong một quá trình có thể đến hàng chục tỷ năm, Mặt Trời có thể trở thành hoàn toàn cô độc, không có một thiên thể nào quay quanh nó.[2]

Lịch sử

Pierre-Simon Laplace, một trong những người tiên phong đề xướng giả thuyết tinh vân.

Những ý tưởng liên quan tới nguồn gốc và định mệnh của thế giới bắt nguồn từ những ghi chép cổ đại; tuy nhiên trong hầu hết lịch sử, hầu như không có nỗ lực nào nhằm thống nhất những lý thuyết đó thành sự tồn tại một "Hệ Mặt Trời", đơn giản bởi vì ý tưởng về một hệ thống thiên thể, theo nhãn quan hiện đại, chỉ xuất hiện rất gần đây. Bước đầu tiên hướng tới một lý thuyết về sự hình thành và phát triển hệ Mặt Trời là sự chấp nhận rộng rãi thuyết nhật tâm, xem Mặt Trời ở trung tâm và Trái Đất quay xung quay nó. Quan niệm này đã được thai nghén từ hàng nghìn năm trước (Aristarchus của Samos đã nói đến nó từ khoảng 250 trước Công nguyên) nhưng thuyết này chỉ được chấp nhận rộng rãi từ thế kỉ 17. Ghi chép đầu tiên nhắc tới thuật ngữ "Hệ Mặt Trời" xuất hiện vào năm 1704.[3]

Lý thuyết chuẩn hiện nay về sự hình thành Hệ Mặt Trời, giả thuyết tinh vân, đã có những thăng trầm kể từ khi xuất hiện trong thế kỉ 18 với Emanuel Swedenborg, Immanuel Kant, và Pierre-Simon Laplace. Sự chỉ trích đáng chú ý nhất đố với lý thuyết này là nó thiếu khả năng giải thích việc Mặt Trời có tương đối ít mô men động lượng khi so với các hành tinh.[4] Tuy nhiên, từ đầu những năm 1980 nghiên cứu về các ngôi sao trẻ cho thấy chúng cũng có các đĩa khí và bụi nguội bao quanh, chính xác như giả thuyết tinh vân tiên đoán, khiến cho gần đây nó được chấp nhận trở lại.[5]

Hiểu biết về cách thức Mặt Trời tiếp tục phát triển ra sao đòi hỏi một hiểu biết về nguồn gốc năng lượng của nó. Việc Arthur Stanley Eddington xác nhận thuyết tương đối tổng quát của Albert Einstein đã ljoeems ppmg mjaamk ra rằng năng lượng Mặt Trời sinh ra từ phản ứng nhiệt hạch bên trong lõi.[6] Năm 1935, Eddington đi xa hơn tới chỗ đề xuất rawnggf các nguyên tố các cũng có thể hình thành bên trong các ngôi sao.[7] Fred Hoyle phát triển tiên đề này với lập luận rằng các ngôi sao đã tiến hóa dduwwojc gọi là sao khổng lồ đỏ tạo ra nhiều nguyên tố nặng hơn hiđrôhêli trong lõi của chúng. Khi một sao khổng lồ đỏ tách bỏ các lớp ngoài, các nguyên tố này có thể quay lại hình thành nên các hệ thống sao mới.[7]

Sự hình thành

Tinh vân tiền Mặt Trời

Giả thiết tinh vân khẳng định rằng Hệ Mặt Trời hình thành từ một vụ suy sụp hấp dẫn của một phần của một đám mây phân tử khổng lồ.[8] Đám mây này có kích thước khoảng 20 pc,[8] trong khi các mảnh của nó cỡ khoảng gần 1 pc (tức 3,25 năm ánh sáng).[9] Sự suy sụp các mảnh nhỏ dẫn tới hình thành những nhân đặc lớn cỡ 0,01–0,1 pc (2000–20000 AU).[8][10] Một trong số các mảnh này, được gọi là tinh vân tiền Mặt Trời, sau này sẽ trở thành Hệ Mặt Trời.[11] Cấu tạo của khu vực có khối lượng chỉ lớn hơn một chút Mặt Trời ngày nay, bao gồm hiđrô, cùng hêli và những lượng rất nhỏ lithium sản sinh ra từ tổng hợp hạt nhân của Vụ Nổ Lớn, chiếm tới 98% khối lượng của nó. 2% còn lại bao gồm các nguyên tố nặng sinh ra từ tổng hợp hạt nhân ở các thế hệ sao trước nó.[12] Ở cuối vòng đời sao, các sao thường phun trào các nguyên tố nặng vào không gian liên sao.[13]

Hình ảnh từ Hubble về các đĩa tiền hành tinh trong Tinh vân Lạp Hộ, một "phòng nôi sao" có thể tương tự như tinh vân cổ xưa đã hình thành Mặt Trời

Những khoáng vật cổ nhất tìm thấy trong các mảnh thiên thạch, vốn được xem là những tàn tích của những vật liệu thể rắn đầu tiên hình thành trong tinh vân tiền Mặt Trời, có tuổi 4568,2 triệu năm, là chỉ dấu về tuổi của bản thân Hệ Mặt Trời.[1] Nghiên cứu về thiên thạch cổ bộc lộ những lượng hạt nhân cuon của các đồng vị có chu kỳ bán rã ngắn, như Fe-60, vốn chỉ hình thành trong các sao tuổi đời ngắn phát nổ. Điều này chỉ ra rằng một hoặc nhiều siêu tân tinh. Điều này cho thấy rằng một hoặc nhiều vụ nổ siêu tân tinh đã xảy ra gần Mặt Trời khi nó đang hình thành. Sóng xung kích từ siêu tân tinh đã khởi động việc hình thành Mặt Trời bằng việc tạo nên những vùng đậm đặc hơn bên trong đám mấy, khiến cho các vùng này co sụp lại.[14] Bởi vì chỉ có những sao lớn, tuổi đời ngắn mới hình thành được siêu tân tinh, Mặt Trời ắt hẳn phải sinh ra trong một vùng tạo sao đã tạo nê những sao lớn, tương tự như Tinh vân Lạp Hộ.[15][16] Nghiên cứu về cấu trúc của Vành đai Kuiper và các vật liệu dị thường của nó gợi ý rằng Mặt Trời sinh ra trong một đám chứa khoảng từ 1 nghìn tới 10 nghìn sao đường kính từ 6,5 tới 19.5 năm ánh sáng với tổng khối lượng vào cỡ 3000 lần khối lượng Mặt Trời (M). Đám này bắt đầu tách ra từ 135 triệu tới 535 triệu năm sau khi hình thành.[17][18] Một số mô hình mô phỏng Mặt Trời khi còn trẻ tương tác với các sao ở gần băng qua trong 100 triều năm đầu đời sinh ra các quỹ đạo dị thường như ở phía rìa Hệ Mặt Trời, chẳng hạn các "vật thể tách rời" bên ngoài Sao Hải Vương.[19]

Do bảo toàn mô men động lượng, tinh vân quay ngày càng nhanh trong lúc co lại. Khi vật liệu bên trong tinh vân ngưng tụ, các nguyên tử trong nó va đập với tần số tăng dần, chuyển động năng của nó thành nhiệt. Tâm của nó, nơi chưa phần lớn khối lượng, trở nên ngày càng nóng hơn phần đĩa bao quanh.[9] Trong khoảng 100 nghìn năm,[8] sự cạnh tranh giữa các lực hấp dẫn, áp suất khí, từ trường và sự quay khiến cho tinh vân phẳng ra thành một đĩa tiền hành tinh với đường kính 200 AU[9] và tạo nên một tiền sao (một ngôi sao chưa bắt đầu tổng hợp hiđrô) ở tâm.[20]

Vào chặng tiến hóa này, Mặt Trời được cho là ở giai đoạn sao T Tauri.[21] Nghiên cứu về dạng sao này chỉ ra rằng chúng thường đi kém với những đĩa vật chất tiền hành tinh với khối lượng cỡ 0,001-0,1 M.[22] Các đĩa này phủ những miền rộng hàng trăm AU—Kính viễn vọng Không gian Hubble đã từng quan sát các đĩa tiền hành tinh có đường kính lên tới 1000 AU trong các vùng tạo sao như Tinh vân Lạp Hộ[23]—và tương đối nguội, có nhiệt độ bề mặt cao nhất chỉ khoảng 1000 K.[24] Trong vòng 50 triệu năm, nhiệt độ và áp suất trong lõi Mặt Trời trở nên rất lớn đủ để kích hoạt hidrô phản ứng nhiệt hạch, tạo ra nguồn nội năng cưỡng lại sự suy sụp hấp dẫn cho đến khi đạt tới trạng thái cân bằng thủy tĩnh.[25] Điều này đánh dấu việc Mặt Trời bước vào giai đoạn quan trọng nhất trong vòng đời của nó, được gọi là "chuỗi chính", kéo dài tới tận ngày nay. Đặc trưng chủ yếu của các sao ở chuỗi chính là năng lượng sao lấy từ phản ứng nhiệt hạch tổng hợp hêli từ hiđrô.[26]

Sự hình thành các hành tinh

Tập tin:Solarnebula.jpg
Tranh minh họa tinh vân Mặt Trời

Các hành tinh khác nhau được tạo ra từ tinh vân mặt Trời, đám mây bụi khí dạng đĩa còn lại sau khi Mặt Trời hình thành.[27] Phương thức hình thành mặt trời được giới khoa học chấp nhận hiện nay là sự bồi tụ (accretion), trong đó các hành tinh khởi đầu từ những hạt bụi quay xung quanh tiền sao. Do va đập vào nhau, các hạt này gắn kết thành những khối đường kính lên tới 200 mét, và đến lượt mình các khối này va đập tạo thành những vật thể lớn hơn (planetesimal tức vi thể hành tinh) lớn chừng 10 km.[28] Các vật thể này tiếp tục lớn dần thông qua va chạm, với tốc độ cỡ vài cm mỗi năm trong khoảng vài triệu năm sau đó.[28]

Phía trong Hệ Mặt Trời, khu vực trong vòng 4 AU từ tâm hệ, quá ấm cho những phân tử dễ bay hơi như nước và methan ngưng tụ, do đó các vi thể hành tinh sinh ra ở đây chỉ có thể tạo ra từ những hợp chất có điểm nóng chảy cao, như các kim loại sắt, nickel, và nhôm cùng những dạng đá silicate. Những vật thể rắn này sẽ trở thành các hành tinh đất đá (Sao Thủy, Sao Kim, Trái Đất, và Sao Hỏa). Các hợp chất này rất hiếm trong vũ trụ, chỉ chiếm 0,6% khối lượng tinh vân, cho nên các hành tinh đất đá không thể phát triển lớn được.[9] Các vật thể phôi thai (tức tiền hành tinh) của các hành tinh đất đá lớn lên cỡ 0,05 khối lượng Trái Đất (M) và ngừng tích tụ vật chất khoảng 100 000 năm sau khi Mặt Trời hình thành; những sự va chạm và kết hợp sau đó giữa các vật thể kích thước hành tinh cho phép chúng lớn lên thành kích thước hiện tại.[29]

Khi các hành tinh đất đá hình thành, chúng vẫn ngập chìm trong đĩa khí bụi. Chất khí chịu ảnh hưởng của áp suất và không quay quanh Mặt Trời nhanh bằng các hành tinh. Sức cản sinh ra giữa chúng gây nên một sự truyền mô men động lượng, khiến cho các hành tinh dần dần dịch chuyển vào các quỹ đạo mới. Các mô hình cho thấy sự thay đổi nhiệt độ trong đĩa chi phối tốc độ dịch chuyển, với xu hướng tổng thể là các hành tinh phía trong dịch chuyển về phía trong khi các đĩa tiêu tán đi cho tới khi hình thành quỹ đạo ổn định như ngày nay.[30]

Các hành tinh khí khổng lồ (Sao Mộc, Sao Thổ, Sao Thiên Vương, và Sao Hải Vương) hình thành phía ngoài "đường đóng băng" (frost line), điểm giữa quỹ đạo của Sao Hỏa và Sao Mộc nơi vật liệu có nhiệt độ đủ thấp để cho các hợp chất dễ bay hơi nằm ở thể rắn. Băng hình thành nên các hành tinh kiểu Sao Mộc dồi dào hơn nhiều kim loại hay silicate, khiến cho các hành tinh này đủ lớn để bắt giữ được hiđrô và hêli, những nguyên tố nhẹ nhất và phổ biến nhất.[9] Các vi thể hành tinh phía ngoài đường đóng băng kết tụ lên tới 4 M trong khoảng 3 triệu năm.[29] Ngày nay, bốn hành tinh khí khổng lồ, với tổng khối lượng bằng 445,6 M, chiếm suýt soát 99% tổng khối lượng các vật thể quay quanh Mặt Trời. Các nhà lý thuyết tin rằng không phải ngẫu nhiên mà Sao Mộc nằm vừa sát bên ngoài đường đóng băng. Bởi đường đóng băng tích tụ một lượng lớn nước bay hơi từ các vật liệu đóng băng rơi vào phía trong, nó tạo nên một vùng áp suất thấp tăng vận tốc quay của các các hạt bụi và giảm chuyển động hướng tâm của chúng, trên thực tế, đường đóng băng đóng vai trò như một rào chắn khiến cho vật chất tích tụ nhanh chóng ở khoảng cách khoảng 5 AU tính từ tâm hệ. Khối lượng vật liệu này lớn dần thành một tiền hành tinh nặng 10 M, sau đó phát triển nhanh chóng bằng cách hút lấy hiđrô từ đĩa khí bao quanh, đạt 150 M chỉ trong khoảng 1 nghìn năm và cuối cùng từ từ lớn lên cho tới khi trở thành Sao Mộc như hiện nay với khối lượng M. Sao Thổ có khối lượng nhỏ hơn nhiều đơn giản bời vì nó hình thành vài triệu năm sau Sao Mộc, do đó còn lại ít khí cho nó hấp thụ hơn.[29]

Các ngôi sao T Tauri như Mặt Trời khi trẻ có gió sao mạnh hơn nhiều những sao già, ổn định. Sao Thiên Vương và Sao Hải Vương có lẽ hình thành muộn hơn Sao Mộc và Sao Thổ, khi các đợt gió Mặt Trời mạnh thổi bay phần lớn đĩa khí bao quanh nó. Kết quả là các hành tinh này tích tụ được rất ít hiđrô và hêli, chỉ cỡ 1 M mỗi hành tinh. Sao Thiên Vường và Sao Hải Vương đôi khi được gọi là các "nhân thất bại".[31] Vấn đề chính đối với các lý thuyết hình thành hành tinh này là khoảng thời gian hình thành chúng. Ở các vị trí như hiện nay sẽ cần hàng trăm triệu năm để cho nhân của chúng hình thành. Điều này bất hợp lý và nó có nghĩa là Sao Thiên Vương và Sao Hải vương hẳn phải hình thành gần với Mặt Trời hơn-ở gần thậm chí là ở giữa Sao Mộc và Sao Thổ-và sau đó dịch chuyển ra phía ngoài (xem mục Dịch chuyển hành tinh phía dưới).[31][32] Chuyển động của kỷ nguyên các thể hành tinh không phải luôn luôn hướng tâm vào Mặt Trời; các mẫu vật mà Stardust thu thập được từ Sao chổi Wild 2 cho thấy rằng vật liệu từ giai đoạn hình thành ban đầu của Hệ mặt Trời dịch chuyển từ miền trong ấm hơn tới khu vực vành đai Kuiper.[33]

Sau khoảng từ 3 tới 10 triệu năm, [29] gió Mặt Trời dọn dẹp hết khí và bụi trong đĩa tiền hành tinh, thổi chúng vào không gian liên sao, chấm dứt sự lớn lên của các hành tinh mới.[34][35]

Những phát triển về sau

Tranh minh họa vụ va chạm lớn được cho là đã hình thành nên Mặt Trăng

Ban đầu người ta cho rằng các hành tinh đã hình thành gần quỹ đạo hiện tại của chúng. Tuy nhiên quan điểm này đã thay đổi mạnh mẽ trong những năm cuối thế kỉ 20 và đầu thế kỉ 21. Hiện nay, người ta tin là Hệ Mặt Trời trông rất khác với hình dạng ban đầ của nó: một số vật thể nặng ít nhất cỡ Sao Thủy từng hiện diện trong miền trong Hệ Mặt Trời, miền ngoài thì từng nhỏ hơn nhiều ngày nay, và vành đai Kuiper từng gần Mặt Trời hơn nhiều.[36]

Các hành tinh đá

Vào cuối kỷ nguyên hình thành hành tinh, miền trong Hệ Mặt Trời từng có tới 50-100 hành tinh phôi thai kích thước cỡ từ Mặt Trăng tới Sao Hỏas.[37][38] Những sự lớn lên có thể xảy ra được là nhờ các vật thể va đập và hợp nhất kéo dài ít hơn 100 triệu năm. Các vật thể này tương tác hấp dẫn với nhau, kéo quỹ đạo lại gần nhau và va đập để lớn lên thành 4 hành tinh đất đá mà chúng ta biết ngày nay.[29] Một cú va đập lớn như vậy có thể đã hình thành nên Mặt Trăng (xem mục Mặt Trăng ở dưới), trong khi một cú khác đã tách mất lớp vỏ của Sao Thủy trẻ tuổi.[39]

Một vấn đề vẫn chưa được giải quyết trong mô hình này là nó không thể giải thích được làm thế nào các quỹ đạo ban đầu của các tiền hành tinh đất đá, cần phải có độ lệch tâm rất cao để va chạm với nhau, lại trở thành những quỹ đạo gần tròn và ổn định như ngày nay.[37] Một giả thuyết cho cái gọi là "trút bỏ độ lệch tâm" này là các hành tinh đất đá hình thành trong một đĩa khí chưa bị Mặt Trời đẩy đi. Ma sát hấp dẫn của lượng khí tồn lưu này dần dần làm giảm nănng lượng của các hành tinh và khiến quỹ đạo của chúng trở lên ổn định.[38] Tuy nhiên, nếu như một đĩa khí như vậy từng tồn tại, thì ngay từ đầu nó sẽ không cho phép các quỹ đạo lệch tâm xuất hiện.[29] Một giả thuyết khác là ma sát hấp dẫn không xảy ra giữa các hành tinh và khí tồn lưu mà là giữa hành tinh với các vật thể nhỏ chưa bị hấp thụ còn lại. Khi các vật thể lớn di chuyển giữa một đám những vật thể nhỏ hơn, các vật thể nhỏ này bị hút bởi hấp dẫn của các vật thể lớn, tạo nên một vùng có mật độ cao hơn, hay một "vệt đuôi hấp dẫn" (giống như vệt sóng ở đuôi tàu thủy) trên đường đi của vật thể lớn. Hấp dẫn ngày càng tăng ở vệt đuôi làm cho vật thể lớn hơn chậm lại và đi vào một quỹ đạo đều đặn hơn.[40]

Vành đai tiểu hành tinh

Rìa ngoài của vùng hành tinh đá, trong khoảng từ 2 tới 4 AU, tới Mặt Trời, được gọi là vành đai tiểu hành tinh. Vành đai này ban đầu chứa đủ vật chất để hình thành 2-3 hành tinh cỡ Trái Đất, và thực sự có rất nhiều vi thể hành tinh hình thành ở đây. Cũng như ở phía trong, các vi thể hành tinh này kết tụ thành cỡ 20–30 hành tinh phôi thai có kích thước từ cỡ Mặt Trăng tới Sao Hỏa;[41] tuy nhiên, do ở gần Sao Mộc cho nên sau khi hành tinh khổng lồ này hình thành, tức khoảng 3 triệu năm sau khi Mặt Trời xuất hiện, khu vực này chịu tác động mạnh mẽ.[37] Cộng hưởng quỹ đạo với Sao Mộc và Sao Thổ đặc biệt mạnh ở vành đai tiêu hành tinh, và tương tác hấp dẫn với những phôi thai nặng hơn đã phân tán rất nhiều vi thể hành tinh vào các miền cộng hưởng này. Lực hấp dẫn của Sao Mộc làm tăng vận tốc các vật thể trong miền cộng hưởng, khiến chúng vỡ vụn ra sau các va chạm thay vì dính vào và hợp nhất.[42]

Khi Sao Mộc dịch chuyển vào phía trong sau khi hình thành, sự công hưởng quét qua vành đai tiểu hành tinh, kích thích các vật thể trong vùng này gia tăng vận tộc tương đối với nhau.[43] Tác động kết hợp của cộng hưởng và các hành tinh phôi thai hoặc phân tán các vi thể hành tinh ra khỏi đĩa hoặc tăng cường độ nghiêng quỹ đạo và độ lệch tâm quỹ đạo của chúng.[41][44] Chính một số phôi thai hành tinh lớn bị Sao Mộc đẩy ra, trong khi số khác có thể đã dịch chuyển vào phía trong hệ và đóng mội vai trò trong giai đoạn kết tụ cuối cùng của các hành tinh đất đá.[41][45][46] Trong giai đoạn tiêu biến này, vành đai tiểu hành tinh mất đi hầu hết khối lượng ban đầu của nó, chỉ còn chừng dưới 1% M, chủ yếu chứa các vi thể hành tinh nhỏ.[44] Một giai đoạn tiêu biến thứ hai đã xảy ra sau khi Sao Mộc và Sao Thổ bước vào một giai đoạn cộng hưởng quỹ đạo 2:1 tạm thời, khiến chúng giảm khối lượng 10–20 lần, chỉ còn khoảng 1/2,000 khối lượng Trái Đất như ngày nay.[47]

Thời kỳ các vụ va chạm lớn ở miền trong Hệ Mặt Trời có thể đã đóng một vai trò hình thành nên lượng nước ngày nay trên Trái Đất (~6×1021 kg) từ các vành đai tiểu hành tinh sơ khai. Nước quá dễ bay hơi để có mặt vào lúc hình thành Trái Đất và hẳn phải tới hành tinh này từ các miền lạnh hơn, xa hơn của Hệ Mặt Trời.[48] Nước có lẽ đã đến từ những phôi thai hành tinh và các vi thể hành tinh bị Sao Mộc ném văng ra khỏi vành đai tiểu hành tinh.[45] Năm 2006 người ta phát hiện một quần thể các sao chổi vành đai chính, đây cũng có thể là một nguồn gốc khác của nước trên Trái Đất.[48][49] Trong khi đó, các sao chổi từ vành đai Kuiber hoặc các vùng xa hơn nhiều nhất chỉ có thể đem lại 6% lượng nước cho Trái Đất.[50][51] Giả thuyết panspermia cho rằng bản thân sự sống có lẽ đã tới Trái Đất theo cách này, tuy nhiên ít người tán thành nó.[52]

Dịch chuyển hành tinh

Các đợt bắn phá sau này

Mặt trăng

Tương lai

Ổn định dài hạn

Hệ thống vành đai mặt trăng

Mặt Trời và môi trường hành tinh

Tương tác thiên hà

Niên đại

Xem thêm

Chú thích

Tham khảo

Liên kết ngoài

  1. ^ a b Audrey Bouvier, Meenakshi Wadhwa (2010). “The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion”. Nature Geoscience. 3: 637–641. Bibcode:2010NatGe...3..637B. doi:10.1038/NGEO941.
  2. ^ Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên dyson
  3. ^ “Solar system”. Merriam Webster Online Dictionary. 2008. Truy cập ngày 15 tháng 4 năm 2008.
  4. ^ M. M. Woolfson (1984). “Rotation in the Solar System”. Philosophical Transactions of the Royal Society. 313 (1524): 5. Bibcode:1984RSPTA.313....5W. doi:10.1098/rsta.1984.0078.
  5. ^ Nigel Henbest (1991). “Birth of the planets: The Earth and its fellow planets may be survivors from a time when planets ricocheted around the Sun like ball bearings on a pinball table”. New Scientist. Truy cập ngày 18 tháng 4 năm 2008.
  6. ^ David Whitehouse (2005). The Sun: A Biography. John Wiley and Sons. ISBN 978-0-470-09297-2.
  7. ^ a b Simon Mitton (2005). “Origin of the Chemical Elements”. Fred Hoyle: A Life in Science. Aurum. tr. 197–222. ISBN 978-1-85410-961-3.
  8. ^ a b c d Thierry Montmerle, Jean-Charles Augereau, Marc Chaussidon (2006). “Solar System Formation and Early Evolution: the First 100 Million Years”. Earth, Moon, and Planets. Spinger. 98 (1–4): 39–95. Bibcode:2006EM&P...98...39M. doi:10.1007/s11038-006-9087-5.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  9. ^ a b c d e Ann Zabludoff (University of Arizona) (Spring 2003). “Lecture 13: The Nebular Theory of the origin of the Solar System”. Truy cập ngày 27 tháng 12 năm 2006.
  10. ^ J. J. Rawal (1986). “Further Considerations on Contracting Solar Nebula” (PDF). Earth, Moon, and Planets. Nehru Planetarium, Bombay India: Springer Netherlands. 34 (1): 93–100. Bibcode:1986EM&P...34...93R. doi:10.1007/BF00054038. Truy cập ngày 27 tháng 12 năm 2006.
  11. ^ W. M. Irvine (1983). T. I. Gombosi (ed.) (biên tập). The chemical composition of the pre-solar nebula. 1. tr. 3–12. Bibcode:1983coex....1....3I. Đã bỏ qua tham số không rõ |booktitle= (trợ giúp)Quản lý CS1: văn bản dư: danh sách biên tập viên (liên kết)
  12. ^ Zeilik & Gregory 1998, tr. 207.
  13. ^ Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên Lineweaver2001
  14. ^ doi:10.1080/00107511003764725
    Hoàn thành chú thích này
  15. ^ J. Jeff Hester, Steven J. Desch, Kevin R. Healy, Laurie A. Leshin (21 tháng 5 năm 2004). “The Cradle of the Solar System”. Science. 304 (5674): 1116–1117. Bibcode:2004Sci...304.1116H. doi:10.1126/science.1096808. PMID 15155936.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  16. ^ Martin Bizzarro, David Ulfbeck, Anne Trinquier, Kristine Thrane, James N. Connelly, Bradley S. Meyer (2007). “Evidence for a Late Supernova Injection of 60Fe into the Protoplanetary Disk”. Science. 316 (5828): 1178–1181. Bibcode:2007Sci...316.1178B. doi:10.1126/science.1141040. PMID 17525336.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  17. ^ Morgan Kelly. “Slow-Moving Rocks Better Odds That Life Crashed to Earth from Space”. News at Princeton. Truy cập ngày 24 tháng 9 năm 2012.
  18. ^ Simon F. Portegies Zwart (2009). “The Lost Siblings of the Sun”. Astrophysical Journal. 696 (L13–L16): L13. arXiv:0903.0237. Bibcode:2009ApJ...696L..13P. doi:10.1088/0004-637X/696/1/L13.
  19. ^ Nathan A. Kaib and Thomas Quinn (2008). “The formation of the Oort cloud in open cluster environments”. Icarus. 197 (1): 221–238. arXiv:0707.4515. Bibcode:2008Icar..197..221K. doi:10.1016/j.icarus.2008.03.020.
  20. ^ Jane S. Greaves (2005). “Disks Around Stars and the Growth of Planetary Systems”. Science. 307 (5706): 68–71. Bibcode:2005Sci...307...68G. doi:10.1126/science.1101979. PMID 15637266.
  21. ^ Caffe, M. W.; Hohenberg, C. M.; Swindle, T. D.; Goswami, J. N. (1 tháng 2 năm 1987). “Evidence in meteorites for an active early sun”. Astrophysical Journal, Part 2 - Letters to the Editor. 313: L31–L35. Bibcode:1987ApJ...313L..31C. doi:10.1086/184826.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  22. ^ M. Momose, Y. Kitamura, S. Yokogawa, R. Kawabe, M. Tamura, S. Ida (2003). Ikeuchi, S., Hearnshaw, J. and Hanawa, T. (eds.) (biên tập). Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a High-resolution Imaging Survey at lambda = 2 mm (PDF). 289. Astronomical Society of the Pacific Conference Series. tr. 85. Đã bỏ qua tham số không rõ |booktitle= (trợ giúp)Quản lý CS1: nhiều tên: danh sách tác giả (liên kết) Quản lý CS1: văn bản dư: danh sách biên tập viên (liên kết)
  23. ^ Deborah L. Padgett, Wolfgang Brandner, Karl R. Stapelfeldt; và đồng nghiệp (tháng 3 năm 1999). “Hubble Space Telescope/NICMOS Imaging of Disks and Envelopes around Very Young Stars”. The Astronomical Journal. 117 (3): 1490–1504. arXiv:astro-ph/9902101. Bibcode:1999AJ....117.1490P. doi:10.1086/300781. “Và đồng nghiệp” được ghi trong: |author= (trợ giúp)Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  24. ^ M. Küker, T. Henning, G. Rüdiger (2003). “Magnetic Star-Disk Coupling in Classical T Tauri Systems”. Astrophysical Journal. 589 (1): 397. Bibcode:2003ApJ...589..397K. doi:10.1086/374408.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  25. ^ Sukyoung Yi, Pierre Demarque, Yong-Cheol Kim, Young-Wook Lee, Chang H. Ree, Thibault Lejeune, Sydney Barnes (2001). “Toward Better Age Estimates for Stellar Populations: The Isochrones for Solar Mixture”. Astrophysical Journal Supplement. 136: 417. arXiv:astro-ph/0104292. Bibcode:2001ApJS..136..417Y. doi:10.1086/321795.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  26. ^ Zeilik & Gregory 1998, p. 320
  27. ^ A. P. Boss, R. H. Durisen (2005). “Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation”. The Astrophysical Journal. 621 (2): L137–L140. arXiv:astro-ph/0501592. Bibcode:2005ApJ...621L.137B. doi:10.1086/429160.
  28. ^ a b P. Goldreich, W. R. Ward (1973). “The Formation of Planetesimals”. Astrophysical Journal. 183: 1051. Bibcode:1973ApJ...183.1051G. doi:10.1086/152291.
  29. ^ a b c d e f Douglas N. C. Lin (tháng 5 năm 2008). “The Genesis of Planets” (fee required). Scientific American. 298 (5): 50–59. doi:10.1038/scientificamerican0508-50. PMID 18444325.
  30. ^ Staff. “How Earth Survived Birth”. Astrobiology Magazine. Truy cập ngày 4 tháng 2 năm 2010.
  31. ^ a b Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên thommes
  32. ^ Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên Levison2007
  33. ^ Emily Lakdawalla (2006). “Stardust Results in a Nutshell: The Solar Nebula was Like a Blender”. The Planetary Society. Truy cập ngày 2 tháng 1 năm 2007.
  34. ^ B. G. Elmegreen (1979). “On the disruption of a protoplanetary disc nebula by a T Tauri like solar wind”. Astronomy & Astrophysics. 80: 77. Bibcode:1979A&A....80...77E.
  35. ^ Heng Hao (24 tháng 11 năm 2004). “Disc-Protoplanet interactions” (PDF). Harvard University. Truy cập ngày 19 tháng 11 năm 2006.
  36. ^ Mike Brown (California Institute of Technology). “Dysnomia, the moon of Eris”. Personal web site. Truy cập ngày 1 tháng 2 năm 2008.
  37. ^ a b c Jean-Marc Petit, Alessandro Morbidelli (2001). “The Primordial Excitation and Clearing of the Asteroid Belt” (PDF). Icarus. 153 (2): 338–347. Bibcode:2001Icar..153..338P. doi:10.1006/icar.2001.6702.
  38. ^ a b Junko Kominami, Shigeru Ida (2001). “The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets”. Icarus. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo. 157 (1): 43–56. Bibcode:2002Icar..157...43K. doi:10.1006/icar.2001.6811.
  39. ^ Sean C. Solomon (2003). “Mercury: the enigmatic innermost planet”. Earth and Planetary Science Letters. 216 (4): 441–455. Bibcode:2003E&PSL.216..441S. doi:10.1016/S0012-821X(03)00546-6.
  40. ^ Peter Goldreich, Yoram Lithwick, Re'em Sari (10 tháng 10 năm 2004). “Final Stages of Planet Formation”. The Astrophysical Journal. 614 (1): 497. arXiv:astro-ph/0404240. Bibcode:2004ApJ...614..497G. doi:10.1086/423612.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  41. ^ a b c William F. Bottke, Daniel D. Durda, David Nesvorny; và đồng nghiệp (2005). “Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion” (PDF). Icarus. 179 (1): 63–94. Bibcode:2005Icar..179...63B. doi:10.1016/j.icarus.2005.05.017. “Và đồng nghiệp” được ghi trong: |author= (trợ giúp)Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  42. ^ R. Edgar, P. Artymowicz (2004). “Pumping of a Planetesimal Disc by a Rapidly Migrating Planet” (PDF). Monthly Notices of the Royal Astronomical Society. 354 (3): 769–772. arXiv:astro-ph/0409017. Bibcode:2004MNRAS.354..769E. doi:10.1111/j.1365-2966.2004.08238.x. Truy cập ngày 12 tháng 5 năm 2008.
  43. ^ E. R. D. Scott (2006). Constraints on Jupiter's Age and Formation Mechanism and the Nebula Lifetime from Chondrites and Asteroids. League City, Texas: Lunar and Planetary Society. Bibcode:2006LPI....37.2367S. Đã bỏ qua tham số không rõ |booktitle= (trợ giúp)
  44. ^ a b David O'Brien, Alessandro Morbidelli, William F. Bottke (2007). “The primordial excitation and clearing of the asteroid belt—Revisited” (PDF). Icarus. 191 (2): 434–452. Bibcode:2007Icar..191..434O. doi:10.1016/j.icarus.2007.05.005.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  45. ^ a b Sean N. Raymond, Thomas Quinn, Jonathan I. Lunine (2007). “High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability”. Astrobiology. 7 (1): 66–84. arXiv:astro-ph/0510285. Bibcode:2007AsBio...7...66R. doi:10.1089/ast.2006.06-0126. PMID 17407404.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  46. ^ Susan Watanabe (20 tháng 7 năm 2001). “Mysteries of the Solar Nebula”. NASA. Truy cập ngày 2 tháng 4 năm 2007.
  47. ^ Georgij A. Krasinsky, Elena V. Pitjeva, M. V. Vasilyev, E. I. Yagudina (tháng 7 năm 2002). “Hidden Mass in the Asteroid Belt”. Icarus. 158 (1): 98–105. Bibcode:2002Icar..158...98K. doi:10.1006/icar.2002.6837.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  48. ^ a b Henry H. Hsieh, David Jewitt (23 tháng 3 năm 2006). “A Population of Comets in the Main Asteroid Belt”. Science. 312 (5773): 561–563. Bibcode:2006Sci...312..561H. doi:10.1126/science.1125150. PMID 16556801. Truy cập ngày 5 tháng 4 năm 2008.
  49. ^ Francis Reddy (2006). “New comet class in Earth's backyard”. astronomy.com. Truy cập ngày 29 tháng 4 năm 2008.
  50. ^ Lỗi chú thích: Thẻ <ref> sai; không có nội dung trong thẻ ref có tên Gomes
  51. ^ A. Morbidelli, J. Chambers, J. I. Lunine, J. M. Petit, F. Robert, G. B. Valsecchi, K. E. Cyr (2000). “Source regions and timescales for the delivery of water to the Earth”. Meteoritics & Planetary Science. 35 (6): 1309. Bibcode:2000M&PS...35.1309M. doi:10.1111/j.1945-5100.2000.tb01518.x. ISSN 1086–9379 Kiểm tra giá trị |issn= (trợ giúp).Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  52. ^ Florence Raulin-Cerceau, Marie-Christine Maurel, Jean Schneider (1998). “From Panspermia to Bioastronomy, the Evolution of the Hypothesis of Universal Life”. Origins of Life and Evolution of Biospheres. Springer Netherlands. 28 (4/6): 597–612. doi:10.1023/A:1006566518046. Truy cập ngày 19 tháng 12 năm 2007.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)

Bản mẫu:Liên kết bài chất lượng tốt Bản mẫu:Liên kết bài chất lượng tốt Bản mẫu:Liên kết bài chất lượng tốt Bản mẫu:Liên kết bài chất lượng tốt Bản mẫu:Liên kết bài chất lượng tốt