Thuyết tương đối hẹp

Bách khoa toàn thư mở Wikipedia
Bước tới: menu, tìm kiếm
Phương trình nổi tiếng của Einstein

Thuyết tương đối hẹp hay thuyết tương đối đặc biệt (tiếng Anh: special relativity hay the special theory of relativity) là thuyết vật lý được chấp nhận về mối quan hệ giữa không gian và thời gian. Nó được dựa trên hai định đề: (1) các định luật vật lý là bất biến (giống hệt nhau) trong tất cả các hệ thống quán tính (không tăng tốc hệ quy chiếu); và (2) tốc độ của ánh sáng trong chân không là như nhau cho tất cả các người quan sát, không phụ thuộc vào chuyển động của nguồn ánh sáng.

Thuyết này do Albert Einstein đề xuất vào năm 1905 trong báo cáo "Về điện động học của các vật di chuyển".[1] Sự bất nhất của cơ học Newton với phương trình Maxwell về điện không có khả năng phát hiện chuyển động của Trái Đất trong chân không dẫn đến sự phát triển của thuyết tương đối hẹp, trong đó thay đổi các quy tắc cơ học để xử lý các tình huống liên quan đến chuyển động gần tốc độ ánh sáng. Tính đến hôm nay, thuyết tương đối hẹp là mô hình chính xác nhất của chuyển động tại bất kỳ tốc độ nào. Mặc dù vậy, cơ học Newton vẫn còn hữu dụng (do sự đơn giản và độ chính xác cao của nó) khi vận tốc tương đối nhỏ so với tốc độ ánh sáng.

Thuyết tương đối hẹp bao hàm một loạt các hệ quả đã được kiểm tra bằng thực nghiệm,[2] bao gồm thu hẹp độ dài, giãn nở thời gian, khối lượng tương đối, chuyển đổi tương đương khối lượng-năng lượng, giới hạn tốc độ phổ quát, và thuyết tương đối của sự đồng thời. Nó đã thay thế khái niệm thông thường của một thời gian phổ quát tuyệt đối với khái niệm của một thời gian phụ thuộc vào hệ quy chiếu và vị trí không gian. Thay vì một khoảng thời gian bất biến giữa hai sự kiện, có một khoảng thời gian không-thời gian bất biến. Kết hợp với các định luật khác của vật lý, hai định đề của lý thuyết tương đối hẹp dự đoán được sự chuyển đổi tương đương giữa khối lượng và năng lượng, thể hiện trong công thức biến đổi tương đương khối lượng-năng lượng E = mc2, trong đó c là tốc độ ánh sáng trong chân không.[3][4]

Một đặc điểm nổi bật của thuyết tương đối hẹp là sự thay thế của những biến đổi Galilê của cơ học Newton với biến đổi Lorentz. Thời gian và không gian không thể được xác định riêng biệt với nhau. Không gian và thời gian cần được đan xen vào một mô hình liên tục duy nhất được gọi là mô hình không-thời gian. Sự kiện xảy ra cùng một lúc cho một người quan sát này có thể xảy ra vào các thời điểm khác nhau đối với một người quan sát khác.

Lý thuyết này được gọi là "hẹp" vì nó áp dụng các nguyên tắc của thuyết tương đối trong các trường hợp đặc biệt của hệ quy chiếu quán tính. Einstein sau đó xuất bản một bài báo về thuyết tương đối rộng vào năm 1915 để áp dụng các nguyên tắc trong trường hợp chung, đó là, với bất kỳ khung không thời gian nào để xử lý phối hợp biến đổi nói chung, và các hiệu ứng hấp dẫn.

Giả thuyết này giải thích cho kết quả của thí nghiệm Michelson-Morley và vì vận tốc truyền ánh sáng là như nhau theo mọi phương nên không thể sử dụng công thức cộng vận tốc Galileo cho ánh sáng.

Thực tế giả thuyết này có thể suy trực tiếp từ tiên đề đầu tiên. Mọi phương trình vật lý không thay đổi khi đi từ hệ quy chiếu quán tính này sang hệ quy chiếu quán tính khác, nghĩa là các phương trình Maxwell cũng bất biến, và một kết quả của nó là tiên đoán về tốc độ ánh sáng cũng phải bất biến. Do đó giả thuyết này không thể là tiên đề, chỉ là hệ quả của tiên đề tổng quát đầu tiên, nếu coi lý thuyết điện từ Maxwell là đúng.

Cũng có thể chú ý rằng, giả thuyết thứ hai có thể đứng độc lập thành một tiên đề, nếu không công nhận lý thuyết điện từ Maxwell hoặc không cần dùng đến hiểu biết về trường điện từ.

Lịch sử[sửa | sửa mã nguồn]

Theo quyển nhật ký của nhà toán học David Hilbert (từng là đồng nghiệp của Einstein vào cuối thế kỷ 19) thì vào tháng 8 năm 1898, ông nói Einstein đã phát minh ra một thuyết mà khi nhắc đến, người đời sẽ sửng sốt[cần dẫn nguồn]. Khi nghiên cứu những vật thể chuyển động với vận tốc rất lớn gần bằng với vận tốc ánh sáng, người ta thấy rằng cơ học cổ điển của Newton không còn thích hợp nữa. Do đó cần thiết phải xem lại các khái niệm về không gian và thời gian. Việc xem xét này thực hiện trong thuyết tương đối.

Các khái niệm chính[sửa | sửa mã nguồn]

Nguyên lý tương đối[sửa | sửa mã nguồn]

Thuyết tương đối hẹp dựa trên hai tiên đề:

  • Tốc độ ánh sáng trong chân không có độ lớn bằng c (=299792458 m/s) trong mọi hệ quy chiếu quán tính, không phụ thuộc vào phương truyền và tốc độ của nguồn sáng hay máy thu
  • Các định luật vật lý có cùng một dạng như nhau trong mọi hệ quy chiếu quán tính (nguyên lý tương đối). Những hệ quy chiếu chuyển động đều gọi là hệ quy chiếu quán tính.

Galileo Galilei đã miêu tả một dạng của nguyên lý tương đối trong cuốn "Dialogo sopra i due massimi sistemi del mondo" vào năm 1632 bằng minh họa về một người ngồi trên con thuyền và nguyên lý này cũng được Newton áp dụng cho cơ học của ông. Một hệ quả trực tiếp của nguyên lý này là không có cách nào để đo vận tốc tuyệt đối của quan sát viên chuyển động đều trong không gian và không thể định nghĩa một hệ quy chiếu đứng yên tuyệt đối. Hệ này phải chứa một thứ gì đó đứng im đối với mọi thứ khác và nó mâu thuẫn với nguyên lý tương đối, theo đó các định luật vật lý trong mọi hệ quy chiếu phải là như nhau. Trước khi có sự ra đời của thuyết tương đối, lý thuyết điện từ cổ điển đề xuất sóng điện từ lan truyền trong môi trường gọi là ê te, một môi trường đứng im bất động. Môi trường này lấp đầy không gian với cấu trúc rắn chắc và do đó các nhà vật lý dùng nó để định nghĩa một hệ quy chiếu tuyệt đối. Trong hệ này các định luật vật lý sẽ có dạng đơn giản và tốc độ ánh sáng sẽ không phải là hằng số do vậy trái ngược với nguyên lý tương đối. Tuy nhiên mọi thí nghiệm nhằm chứng minh sự tồn tại của ê te, như thí nghiệm Michelson - Morley nổi tiếng vào năm 1887 đều thất bại khi không phát hiện ra sự sai khác về tốc độ khi ánh sáng lan truyền theo các hướng khác nhau trong môi trường ê te giả định.

Einstein đã từ bỏ khái niệm thông thường về không gian và thời gian cũng như giả thuyết ê tê để lý giải được vẻ mâu thuẫn bề ngoài giữa nguyên lý tương đối và tốc độ ánh sáng không đổi trong lý thuyết điện từ. Không phải ngẫu nhiên mà có những thí nghiệm và kết luận trong thuyết điện từ dẫn tới sự khám phá ra thuyết tương đối, như thí nghiệm di chuyển cuộn dây và nam châm. Einstein đã đặt tên cho bài báo công bố năm 1905, khai sinh ra thuyết tương đối hẹp, "Về điện động lực học của các vật thể chuyển động" để thể hiện sự trân trọng đối với lý thuyết điện từ Maxwell và ảnh hưởng của nó tới khám phá của ông.

Tính tương đối của không gian và thời gian[sửa | sửa mã nguồn]

Không gian và thời gian không còn là cấu trúc bất biến phổ quát trong thuyết tương đối nữa. Cụ thể, các quan sát viên sẽ nhận xét hai sự kiện xảy ra trong không gian và thời gian là đồng thời hay sớm hoặc trễ tùy thuộc vào trạng thái chuyển động của họ. Vật thể chuyển động có kích thước bị ngắn lại theo hướng chuyển động so với khi nó đứng yên và đồng hồ chuyển động chạy chậm hơn so với đồng hồ đặt yên một chỗ. Tuy nhiên, mỗi quan sát viên chuyển động với vận tốc đều đưa ra kết luận chỉ đúng trong hệ quy chiếu của riêng họ, do vậy những kết luận từ hai quan sát viên có tính tương hỗ lẫn nhau, ví dụ như mỗi người sẽ thấy đồng hồ của người kia chạy chậm lại. Thêm nữa, nếu hai người chuyển động dọc theo hướng nhìn của nhau, mỗi người sẽ thấy thước đo của người kia ngắn đi. Nguyên lý tương đối không thể trả lời cho câu hỏi về người nào miêu tả là đúng mà nó chỉ cho biết kết quả của từng người thu được.

Sự co ngắn chiều dài và sự giãn nở thời gian có thể dễ dàng hiểu được từ biểu đồ Minkowski và nghịch lý anh em sinh đôi. Trong dạng thức toán học, chúng là kết quả của phép biến đổi Lorentz miêu tả mối liên hệ giữa tọa độ không gian và thời gian của các quan sát viên khác nhau. Phép biến đổi tuyến tính này được rút ra trực tiếp từ hai tiên đề trên.

Hầu hết các hiệu ứng tương đối tính đều trở lên đáng kể khi vận tốc là tương đối lớn so với tốc độ ánh sáng, do vậy phần lớn các hiện tượng hàng ngày có thể giải thích dựa trên cơ học Newton và những hiệu ứng tương đối tính có vẻ như trái ngược với trực giác.

Tốc độ ánh sáng là một giới hạn[sửa | sửa mã nguồn]

Bài chi tiết: Tốc độ ánh sáng

Không một vật nào và không một thông tin nào có thể đi nhanh hơn ánh sáng trong chân không. Càng gần tiếp cận với tốc độ ánh sáng, thì năng lượng vật đó càng lớn, bởi vì động năng của vật luôn luôn tăng rất nhanh khi vận tốc của nó tăng. Để vật đạt tới tốc độ ánh sáng thì cần phải cung cấp cho vật năng lượng lớn vô hạn.

Kết luận trên là hệ quả của cấu trúc không thời gian không phải là thuộc tính của vật, chẳng hạn do hạn chế về công nghệ chế tạo tàu vũ trụ. Nếu một vật chuyển động nhanh hơn ánh sáng từ A tới B, và một quan sát viên chuyển động từ B tới A thì lúc này câu hỏi ai miêu tả tình huống đúng đắn lại có ý nghĩa. Khi đó quan sát viên sẽ nhìn thấy kết quả trước khi nhìn thấy nguyên nhân (anh ta nhìn thấy vật xuất hiện ở B trước khi thấy nó đi ra từ A). Như vậy, nguyên lý nhân quả bị vi phạm bởi vì trình tự nguyên nhân kết quả không được xác định. Những vật chuyển động nhanh hơn ánh sáng sẽ đi ra khỏi tầm quan sát của người hoặc thiết bị theo dõi.

Không thời gian[sửa | sửa mã nguồn]

Bài chi tiết: Không thời gian

Không gian và thời gian xuất hiện trong những phương trình cơ bản của thuyết tương đối có vai trò như nhau và có thể kết hợp thành không thời gian bốn chiều. Sự cảm nhận về không gian và thời gian theo cách khác nhau chỉ là do cảm nhận của con người. Về mặt toán học, khoảng không thời gian giữa hai sự kiện được định nghĩa bằng hiệu tọa độ không thời gian bốn chiều của hai sự kiện trong một hệ quy chiếu giống như định nghĩa về khoảng cách giữa hai điểm trong không gian Euclide, chỉ có một điểm khác là tọa độ thời gian ngược dấu với tọa độ không gian. Trong không thời gian cũng định nghĩa vectơ bốn như vectơ thông thường trong không gian ba chiều.

Trong không thời gian Minkowski, giới hạn tốc độ ánh sáng và tính tương đối của độ dài và khoảng thời gian phân ra những vùng riêng biệt đối với mỗi quan sát viên:

  • Miền các điểm nằm trong nón ánh sáng tương lai là các điểm mà quan sát viên có thể tới được với vận tốc ánh sáng hoặc gửi đi tín hiệu với tốc độ ánh sáng.
  • Miền các điểm nằm trong nón ánh sáng quá khứ là các điểm gửi đi với tín hiệu có tốc độ bằng tốc độ ánh sáng tới được quan sát viên.
  • Những điểm còn lại nằm trong miền "kiểu-không gian" tách biệt khỏi quan sát viên. Trong miền này, không thể định nghĩa được quá khứ và tương lai.

Các vectơ-bốn không thời gian có nhiều ứng dụng thực tiễn và lý thuyết, ví dụ như trong tính toán động năng của các hạt chuyển động trong máy gia tốc.

Sự tương đương giữa khối lượng và năng lượng[sửa | sửa mã nguồn]

Bài chi tiết: Sự tương đương khối lượng-năng lượng

Một hệ có khối lượng m chứa trong nó một năng lượng nghỉ E liên hệ bởi công thức :

với là tốc độ ánh sáng. Công thức này là một trong những công thức nổi tiếng nhất của vật lý học nói riêng và khoa học nói chung. Cũng vì công thức này mà Einstein hay bị hiểu nhầm rằng ông có liên quan tới sự phát triển của bom nguyên tử mặc dù chỉ có lá thư của ông gửi tới tổng thống Franklin D. Roosevelt là đề cập tới việc Hoa Kỳ cần phải cảnh giác với chương trình nghiên cứu vũ khí của Đức Quốc xã. Lượng năng lượng khổng lồ giải phóng ra từ phản ứng phân hạch hạt nhân phần lớn là do giải phóng năng lượng liên kết của các hạt nhân trước khi phản ứng trong khi năng lượng bởi sự chênh lệch khối lượng trước và sau phản ứng nhân với hệ số chỉ đóng góp phần nhỏ. Phản ứng phân hạch được Otto Hahn, Otto FrischLise Meitner phát hiện vào năm 1938.

Phương trình đóng góp vai trò hỗ trợ trong nghiên cứu phân hạch hạt nhân. Không phải vì cơ chế đằng sau năng lượng hạt nhân, nhưng mà là một công cụ: Bởi vì năng lượng và khối lượng tương đương với nhau, những phép đo độ nhạy cao về khối lượng của các hạt nhân nguyên tử khác nhau cho những nhà nghiên cứu chứng cứ quan trọng về độ lớn của năng lượng liên kết hạt nhân. Công thức của Einstein không nói cho chúng ta tại sao năng lượng liên kết hạt nhân lại lớn đến cỡ đó mà nó mở ra một khả năng (cùng với những phương pháp khác) để đo những năng lượng liên kết này.

Từ trường trong thuyết tương đối[sửa | sửa mã nguồn]

Sự tồn tại của lực từ có mối liên hệ mật thiết với thuyết tương đối hẹp. Định luật Coulomb về lực điện khi đứng riêng rẽ sẽ không thể tương thích với cấu trúc của không thời gian. Thật vậy, khi các điện tích đứng yên sẽ không có từ trường xuất hiện, trừ khi có một quan sát viên đang di chuyển so với các điện tích. Có thể giải thích kết quả quan sát này dựa trên phép biến đổi Lorentz giữa mối liên hệ của vectơ từ trường và vectơ điện trường, cho thấy mối liên hệ khăng khít giữa từ trường, điện trường và hệ quy chiếu được lựa chọn. Sự xuất hiện của từ trường khi đưa nam châm di chuyển đến gần vòng dây dẫn (và ngược lại), hay tổng quát hơn khi có từ trường biến đổi thì xuất hiện điện trường (và ngược lại) còn liên quan đến thuộc tính của không gian và thời gian. Từ phương diện này, tuy hai định luật Coulomb và định luật Biot-Savart có vẻ khác nhau nhưng khi xét trong từng hệ quy chiếu của quan sát viên đứng yên hay chuyển động sẽ cho những kết quả như nhau. Trong mô tả toán học của thuyết tương đối, từ trường và điện trường được miêu tả chung bằng một đại lượng, tenxơ trường điện từ hạng bốn, tương tự như sự thống nhất giữa không gian và thời gian trong không thời gian bốn chiều.

Xem thêm[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]

  1. ^ Albert Einstein (1905) "Zur Elektrodynamik bewegter Körper", Annalen der Physik 17: 891; English translation On the Electrodynamics of Moving Bodies by George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920).
  2. ^ Tom Roberts and Siegmar Schleif (tháng 10 năm 2007). “What is the experimental basis of Special Relativity?”. Usenet Physics FAQ. Truy cập ngày 17 tháng 9 năm 2008. 
  3. ^ Albert Einstein (2001). Relativity: The Special and the General Theory . Routledge. tr. 48. ISBN 0-415-25384-5. 
  4. ^ Richard Phillips Feynman (1998). Six Not-so-easy Pieces: Einstein's relativity, symmetry, and space–time . Basic Books. tr. 68. ISBN 0-201-32842-9. 

Liên kết ngoài[sửa | sửa mã nguồn]

Bản mẫu:Wikisource portal

Tác phẩm gốc[sửa | sửa mã nguồn]

Thuyết tương đối hẹp cơ bản (không cần kiến thức toán)[sửa | sửa mã nguồn]

  • Wikibooks: Special Relativity
  • Einstein Light An award-winning, non-technical introduction (film clips and demonstrations) supported by dozens of pages of further explanations and animations, at levels with or without mathematics.
  • Einstein Online Introduction to relativity theory, from the Max Planck Institute for Gravitational Physics.
  • Audio: Cain/Gay (2006) – Astronomy Cast. Einstein's Theory of Special Relativity

Thuyết tương đối hẹp nâng cao (sử dụng công thức toán từ đơn giản đến phức tạp)[sửa | sửa mã nguồn]

Hệ quả tưởng tượng của thuyết tương đối hẹp[sửa | sửa mã nguồn]